summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-10 13:14:33 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-10 13:14:33 +0000
commit7533269c0d79cc56c9037596b9d9dbd350fe1a38 (patch)
tree7768f2fe37d676b95549006488c3f94b11210531
parent1e512d0c57c5108f2c6eb2cec8632f4965dcab76 (diff)
automatic import of python-missingpy
-rw-r--r--.gitignore1
-rw-r--r--python-missingpy.spec183
-rw-r--r--sources1
3 files changed, 185 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..7ea024d 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/missingpy-0.2.0.tar.gz
diff --git a/python-missingpy.spec b/python-missingpy.spec
new file mode 100644
index 0000000..d65311f
--- /dev/null
+++ b/python-missingpy.spec
@@ -0,0 +1,183 @@
+%global _empty_manifest_terminate_build 0
+Name: python-missingpy
+Version: 0.2.0
+Release: 1
+Summary: Missing Data Imputation for Python
+License: GNU General Public License v3 (GPLv3)
+URL: https://github.com/epsilon-machine/missingpy
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/20/ef/2c8b77dc55f0e1af9eb9b01ed220abf3957ae205c7b355951a02783416a0/missingpy-0.2.0.tar.gz
+BuildArch: noarch
+
+
+%description
+ missing_values : integer or "NaN", optional (default = "NaN")
+ The placeholder for the missing values. All occurrences of
+ `missing_values` will be imputed. For missing values encoded as
+ ``np.nan``, use the string value "NaN".
+ n_neighbors : int, optional (default = 5)
+ Number of neighboring samples to use for imputation.
+ weights : str or callable, optional (default = "uniform")
+ Weight function used in prediction. Possible values:
+ - 'uniform' : uniform weights. All points in each neighborhood
+ are weighted equally.
+ - 'distance' : weight points by the inverse of their distance.
+ in this case, closer neighbors of a query point will have a
+ greater influence than neighbors which are further away.
+ - [callable] : a user-defined function which accepts an
+ array of distances, and returns an array of the same shape
+ containing the weights.
+ metric : str or callable, optional (default = "masked_euclidean")
+ Distance metric for searching neighbors. Possible values:
+ - 'masked_euclidean'
+ - [callable] : a user-defined function which conforms to the
+ definition of _pairwise_callable(X, Y, metric, **kwds). In other
+ words, the function accepts two arrays, X and Y, and a
+ ``missing_values`` keyword in **kwds and returns a scalar distance
+ value.
+ row_max_missing : float, optional (default = 0.5)
+ The maximum fraction of columns (i.e. features) that can be missing
+ before the sample is excluded from nearest neighbor imputation. It
+ means that such rows will not be considered a potential donor in
+ ``fit()``, and in ``transform()`` their missing feature values will be
+ imputed to be the column mean for the entire dataset.
+ col_max_missing : float, optional (default = 0.8)
+ The maximum fraction of rows (or samples) that can be missing
+ for any feature beyond which an error is raised.
+ copy : boolean, optional (default = True)
+ If True, a copy of X will be created. If False, imputation will
+ be done in-place whenever possible. Note that, if metric is
+ "masked_euclidean" and copy=False then missing_values in the
+ input matrix X will be overwritten with zeros.
+
+%package -n python3-missingpy
+Summary: Missing Data Imputation for Python
+Provides: python-missingpy
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-missingpy
+ missing_values : integer or "NaN", optional (default = "NaN")
+ The placeholder for the missing values. All occurrences of
+ `missing_values` will be imputed. For missing values encoded as
+ ``np.nan``, use the string value "NaN".
+ n_neighbors : int, optional (default = 5)
+ Number of neighboring samples to use for imputation.
+ weights : str or callable, optional (default = "uniform")
+ Weight function used in prediction. Possible values:
+ - 'uniform' : uniform weights. All points in each neighborhood
+ are weighted equally.
+ - 'distance' : weight points by the inverse of their distance.
+ in this case, closer neighbors of a query point will have a
+ greater influence than neighbors which are further away.
+ - [callable] : a user-defined function which accepts an
+ array of distances, and returns an array of the same shape
+ containing the weights.
+ metric : str or callable, optional (default = "masked_euclidean")
+ Distance metric for searching neighbors. Possible values:
+ - 'masked_euclidean'
+ - [callable] : a user-defined function which conforms to the
+ definition of _pairwise_callable(X, Y, metric, **kwds). In other
+ words, the function accepts two arrays, X and Y, and a
+ ``missing_values`` keyword in **kwds and returns a scalar distance
+ value.
+ row_max_missing : float, optional (default = 0.5)
+ The maximum fraction of columns (i.e. features) that can be missing
+ before the sample is excluded from nearest neighbor imputation. It
+ means that such rows will not be considered a potential donor in
+ ``fit()``, and in ``transform()`` their missing feature values will be
+ imputed to be the column mean for the entire dataset.
+ col_max_missing : float, optional (default = 0.8)
+ The maximum fraction of rows (or samples) that can be missing
+ for any feature beyond which an error is raised.
+ copy : boolean, optional (default = True)
+ If True, a copy of X will be created. If False, imputation will
+ be done in-place whenever possible. Note that, if metric is
+ "masked_euclidean" and copy=False then missing_values in the
+ input matrix X will be overwritten with zeros.
+
+%package help
+Summary: Development documents and examples for missingpy
+Provides: python3-missingpy-doc
+%description help
+ missing_values : integer or "NaN", optional (default = "NaN")
+ The placeholder for the missing values. All occurrences of
+ `missing_values` will be imputed. For missing values encoded as
+ ``np.nan``, use the string value "NaN".
+ n_neighbors : int, optional (default = 5)
+ Number of neighboring samples to use for imputation.
+ weights : str or callable, optional (default = "uniform")
+ Weight function used in prediction. Possible values:
+ - 'uniform' : uniform weights. All points in each neighborhood
+ are weighted equally.
+ - 'distance' : weight points by the inverse of their distance.
+ in this case, closer neighbors of a query point will have a
+ greater influence than neighbors which are further away.
+ - [callable] : a user-defined function which accepts an
+ array of distances, and returns an array of the same shape
+ containing the weights.
+ metric : str or callable, optional (default = "masked_euclidean")
+ Distance metric for searching neighbors. Possible values:
+ - 'masked_euclidean'
+ - [callable] : a user-defined function which conforms to the
+ definition of _pairwise_callable(X, Y, metric, **kwds). In other
+ words, the function accepts two arrays, X and Y, and a
+ ``missing_values`` keyword in **kwds and returns a scalar distance
+ value.
+ row_max_missing : float, optional (default = 0.5)
+ The maximum fraction of columns (i.e. features) that can be missing
+ before the sample is excluded from nearest neighbor imputation. It
+ means that such rows will not be considered a potential donor in
+ ``fit()``, and in ``transform()`` their missing feature values will be
+ imputed to be the column mean for the entire dataset.
+ col_max_missing : float, optional (default = 0.8)
+ The maximum fraction of rows (or samples) that can be missing
+ for any feature beyond which an error is raised.
+ copy : boolean, optional (default = True)
+ If True, a copy of X will be created. If False, imputation will
+ be done in-place whenever possible. Note that, if metric is
+ "masked_euclidean" and copy=False then missing_values in the
+ input matrix X will be overwritten with zeros.
+
+%prep
+%autosetup -n missingpy-0.2.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-missingpy -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..3beb798
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+8ef4daf2e3626f80121308619cb05277 missingpy-0.2.0.tar.gz