summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-10 14:17:04 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-10 14:17:04 +0000
commit0d59ac8c82f253bc3ae91b6c83730d905d9b6540 (patch)
tree3bf273daa6c72450df133411099d2b3e5195482c
parent3988cd2881e230178e35331f3fd0730dadb4b64a (diff)
automatic import of python-pandas-flavor
-rw-r--r--.gitignore1
-rw-r--r--python-pandas-flavor.spec558
-rw-r--r--sources1
3 files changed, 560 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..bf64ec8 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/pandas_flavor-0.5.0.tar.gz
diff --git a/python-pandas-flavor.spec b/python-pandas-flavor.spec
new file mode 100644
index 0000000..1746c3e
--- /dev/null
+++ b/python-pandas-flavor.spec
@@ -0,0 +1,558 @@
+%global _empty_manifest_terminate_build 0
+Name: python-pandas-flavor
+Version: 0.5.0
+Release: 1
+Summary: The easy way to write your own Pandas flavor.
+License: MIT
+URL: https://github.com/Zsailer/pandas_flavor
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/8c/bc/f746bb85e00a6cfdaae3b03efb18bc33035639e8c8732806d042c345d4ae/pandas_flavor-0.5.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-pandas
+Requires: python3-xarray
+Requires: python3-lazy-loader
+
+%description
+
+# Pandas Flavor
+**The easy way to write your own flavor of Pandas**
+
+Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
+
+Pandas-flavor extends Pandas' extension API by:
+1. adding support for registering methods as well.
+2. making each of these functions backwards compatible with older versions of Pandas.
+
+***What does this mean?***
+
+It is now simpler to add custom functionality to Pandas DataFrames and Series.
+
+Import this package. Write a simple python function. Register the function using one of the following decorators.
+
+***Why?***
+
+Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
+
+**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
+
+Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
+
+## Register accessors
+
+Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
+that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
+accessor that provides plotting functionality.
+
+Add an accessor by registering the function with the following decorator
+and passing the decorator an accessor name.
+
+
+```python
+# my_flavor.py
+
+import pandas_flavor as pf
+
+@pf.register_dataframe_accessor('my_flavor')
+class MyFlavor(object):
+
+ def __init__(self, data):
+ self._data = data
+
+ def row_by_value(self, col, value):
+ """Slice out row from DataFrame by a value."""
+ return self._data[self._data[col] == value].squeeze()
+
+```
+
+Every dataframe now has this accessor as an attribute.
+```python
+import my_flavor
+
+# DataFrame.
+df = pd.DataFrame(data={
+ "x": [10, 20, 25],
+ "y": [0, 2, 5]
+})
+
+# Print DataFrame
+print(df)
+
+# x y
+# 0 10 0
+# 1 20 2
+# 2 25 5
+
+# Access this functionality
+df.my_flavor.row_by_value('x', 10)
+
+# x 10
+# y 0
+# Name: 0, dtype: int64
+```
+
+To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
+[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
+
+
+## Register methods
+
+Using this package, you can attach functions directly to Pandas objects. No
+intermediate accessor is needed.
+
+```python
+# my_flavor.py
+
+import pandas_flavor as pf
+
+@pf.register_dataframe_method
+def row_by_value(df, col, value):
+ """Slice out row from DataFrame by a value."""
+ return df[df[col] == value].squeeze()
+
+```
+
+```python
+import pandas as pd
+import my_flavor
+
+# DataFrame.
+df = pd.DataFrame(data={
+ "x": [10, 20, 25],
+ "y": [0, 2, 5]
+})
+
+# Print DataFrame
+print(df)
+
+# x y
+# 0 10 0
+# 1 20 2
+# 2 25 5
+
+# Access this functionality
+df.row_by_value('x', 10)
+
+# x 10
+# y 0
+# Name: 0, dtype: int64
+```
+
+## Available Methods
+
+- **register_dataframe_method**: register a method directly with a pandas DataFrame.
+- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
+- **register_series_method**: register a methods directly with a pandas Series.
+- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
+
+## Installation
+
+You can install using **pip**:
+```
+pip install pandas_flavor
+```
+or conda (thanks @ericmjl)!
+```
+conda install -c conda-forge pandas-flavor
+```
+
+## Contributing
+
+Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
+
+If you have a feature request, please open an issue or submit a PR!
+
+## TL;DR
+
+Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
+
+Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
+
+<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
+
+**So how does method registration work?**
+
+When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
+1. inheriting the docstring of your function
+2. overriding the `__call__` method to call your function.
+
+
+%package -n python3-pandas-flavor
+Summary: The easy way to write your own Pandas flavor.
+Provides: python-pandas-flavor
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-pandas-flavor
+
+# Pandas Flavor
+**The easy way to write your own flavor of Pandas**
+
+Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
+
+Pandas-flavor extends Pandas' extension API by:
+1. adding support for registering methods as well.
+2. making each of these functions backwards compatible with older versions of Pandas.
+
+***What does this mean?***
+
+It is now simpler to add custom functionality to Pandas DataFrames and Series.
+
+Import this package. Write a simple python function. Register the function using one of the following decorators.
+
+***Why?***
+
+Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
+
+**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
+
+Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
+
+## Register accessors
+
+Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
+that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
+accessor that provides plotting functionality.
+
+Add an accessor by registering the function with the following decorator
+and passing the decorator an accessor name.
+
+
+```python
+# my_flavor.py
+
+import pandas_flavor as pf
+
+@pf.register_dataframe_accessor('my_flavor')
+class MyFlavor(object):
+
+ def __init__(self, data):
+ self._data = data
+
+ def row_by_value(self, col, value):
+ """Slice out row from DataFrame by a value."""
+ return self._data[self._data[col] == value].squeeze()
+
+```
+
+Every dataframe now has this accessor as an attribute.
+```python
+import my_flavor
+
+# DataFrame.
+df = pd.DataFrame(data={
+ "x": [10, 20, 25],
+ "y": [0, 2, 5]
+})
+
+# Print DataFrame
+print(df)
+
+# x y
+# 0 10 0
+# 1 20 2
+# 2 25 5
+
+# Access this functionality
+df.my_flavor.row_by_value('x', 10)
+
+# x 10
+# y 0
+# Name: 0, dtype: int64
+```
+
+To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
+[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
+
+
+## Register methods
+
+Using this package, you can attach functions directly to Pandas objects. No
+intermediate accessor is needed.
+
+```python
+# my_flavor.py
+
+import pandas_flavor as pf
+
+@pf.register_dataframe_method
+def row_by_value(df, col, value):
+ """Slice out row from DataFrame by a value."""
+ return df[df[col] == value].squeeze()
+
+```
+
+```python
+import pandas as pd
+import my_flavor
+
+# DataFrame.
+df = pd.DataFrame(data={
+ "x": [10, 20, 25],
+ "y": [0, 2, 5]
+})
+
+# Print DataFrame
+print(df)
+
+# x y
+# 0 10 0
+# 1 20 2
+# 2 25 5
+
+# Access this functionality
+df.row_by_value('x', 10)
+
+# x 10
+# y 0
+# Name: 0, dtype: int64
+```
+
+## Available Methods
+
+- **register_dataframe_method**: register a method directly with a pandas DataFrame.
+- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
+- **register_series_method**: register a methods directly with a pandas Series.
+- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
+
+## Installation
+
+You can install using **pip**:
+```
+pip install pandas_flavor
+```
+or conda (thanks @ericmjl)!
+```
+conda install -c conda-forge pandas-flavor
+```
+
+## Contributing
+
+Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
+
+If you have a feature request, please open an issue or submit a PR!
+
+## TL;DR
+
+Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
+
+Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
+
+<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
+
+**So how does method registration work?**
+
+When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
+1. inheriting the docstring of your function
+2. overriding the `__call__` method to call your function.
+
+
+%package help
+Summary: Development documents and examples for pandas-flavor
+Provides: python3-pandas-flavor-doc
+%description help
+
+# Pandas Flavor
+**The easy way to write your own flavor of Pandas**
+
+Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
+
+Pandas-flavor extends Pandas' extension API by:
+1. adding support for registering methods as well.
+2. making each of these functions backwards compatible with older versions of Pandas.
+
+***What does this mean?***
+
+It is now simpler to add custom functionality to Pandas DataFrames and Series.
+
+Import this package. Write a simple python function. Register the function using one of the following decorators.
+
+***Why?***
+
+Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
+
+**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
+
+Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
+
+## Register accessors
+
+Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
+that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
+accessor that provides plotting functionality.
+
+Add an accessor by registering the function with the following decorator
+and passing the decorator an accessor name.
+
+
+```python
+# my_flavor.py
+
+import pandas_flavor as pf
+
+@pf.register_dataframe_accessor('my_flavor')
+class MyFlavor(object):
+
+ def __init__(self, data):
+ self._data = data
+
+ def row_by_value(self, col, value):
+ """Slice out row from DataFrame by a value."""
+ return self._data[self._data[col] == value].squeeze()
+
+```
+
+Every dataframe now has this accessor as an attribute.
+```python
+import my_flavor
+
+# DataFrame.
+df = pd.DataFrame(data={
+ "x": [10, 20, 25],
+ "y": [0, 2, 5]
+})
+
+# Print DataFrame
+print(df)
+
+# x y
+# 0 10 0
+# 1 20 2
+# 2 25 5
+
+# Access this functionality
+df.my_flavor.row_by_value('x', 10)
+
+# x 10
+# y 0
+# Name: 0, dtype: int64
+```
+
+To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
+[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
+
+
+## Register methods
+
+Using this package, you can attach functions directly to Pandas objects. No
+intermediate accessor is needed.
+
+```python
+# my_flavor.py
+
+import pandas_flavor as pf
+
+@pf.register_dataframe_method
+def row_by_value(df, col, value):
+ """Slice out row from DataFrame by a value."""
+ return df[df[col] == value].squeeze()
+
+```
+
+```python
+import pandas as pd
+import my_flavor
+
+# DataFrame.
+df = pd.DataFrame(data={
+ "x": [10, 20, 25],
+ "y": [0, 2, 5]
+})
+
+# Print DataFrame
+print(df)
+
+# x y
+# 0 10 0
+# 1 20 2
+# 2 25 5
+
+# Access this functionality
+df.row_by_value('x', 10)
+
+# x 10
+# y 0
+# Name: 0, dtype: int64
+```
+
+## Available Methods
+
+- **register_dataframe_method**: register a method directly with a pandas DataFrame.
+- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
+- **register_series_method**: register a methods directly with a pandas Series.
+- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
+
+## Installation
+
+You can install using **pip**:
+```
+pip install pandas_flavor
+```
+or conda (thanks @ericmjl)!
+```
+conda install -c conda-forge pandas-flavor
+```
+
+## Contributing
+
+Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
+
+If you have a feature request, please open an issue or submit a PR!
+
+## TL;DR
+
+Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
+
+Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
+
+<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
+
+**So how does method registration work?**
+
+When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
+1. inheriting the docstring of your function
+2. overriding the `__call__` method to call your function.
+
+
+%prep
+%autosetup -n pandas-flavor-0.5.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-pandas-flavor -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..939497c
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+5062d1059e01ca859b95c6f248046b4e pandas_flavor-0.5.0.tar.gz