summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-11 21:31:52 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-11 21:31:52 +0000
commit168d3a4f530d5beb6a42914c341b0e34c697c688 (patch)
treedbd22b42d2986249ef79f4febff4bf472e0a5da4
parent1b63d3875c6e130c104d402b28e967388cb21b39 (diff)
automatic import of python-pyts
-rw-r--r--.gitignore1
-rw-r--r--python-pyts.spec636
-rw-r--r--sources1
3 files changed, 638 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..4d280d7 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/pyts-0.12.0.tar.gz
diff --git a/python-pyts.spec b/python-pyts.spec
new file mode 100644
index 0000000..785b7ca
--- /dev/null
+++ b/python-pyts.spec
@@ -0,0 +1,636 @@
+%global _empty_manifest_terminate_build 0
+Name: python-pyts
+Version: 0.12.0
+Release: 1
+Summary: A python package for time series classification
+License: new BSD
+URL: https://github.com/johannfaouzi/pyts
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/8e/88/929f87082e8700d51c663e613c52c3f47f84558c888af689c52500f3ae65/pyts-0.12.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-scipy
+Requires: python3-scikit-learn
+Requires: python3-joblib
+Requires: python3-numba
+Requires: python3-docutils
+Requires: python3-sphinx
+Requires: python3-sphinx-gallery
+Requires: python3-numpydoc
+Requires: python3-matplotlib
+Requires: python3-pytest
+Requires: python3-pytest-cov
+
+%description
+[![Build Status](https://dev.azure.com/johannfaouzi0034/johannfaouzi/_apis/build/status/johannfaouzi.pyts?branchName=main)](https://dev.azure.com/johannfaouzi0034/johannfaouzi/_build/latest?definitionId=1&branchName=main)
+[![Documentation Status](https://readthedocs.org/projects/pyts/badge/?version=latest)](https://pyts.readthedocs.io/)
+[![Codecov](https://codecov.io/gh/johannfaouzi/pyts/branch/main/graph/badge.svg)](https://codecov.io/gh/johannfaouzi/pyts)
+[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pyts.svg)](https://img.shields.io/pypi/pyversions/pyts.svg)
+[![PyPI version](https://badge.fury.io/py/pyts.svg)](https://badge.fury.io/py/pyts)
+[![Conda Version](https://img.shields.io/conda/vn/conda-forge/pyts.svg)](https://anaconda.org/conda-forge/pyts)
+[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/johannfaouzi/pyts.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/johannfaouzi/pyts/context:python)
+[![Gitter](https://badges.gitter.im/johann-faouzi/community.svg)](https://gitter.im/johann-faouzi/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1244152.svg)](https://doi.org/10.5281/zenodo.1244152)
+
+## pyts: a Python package for time series classification
+
+pyts is a Python package for time series classification. It
+aims to make time series classification easily accessible by providing
+preprocessing and utility tools, and implementations of
+state-of-the-art algorithms. Most of these algorithms transform time series,
+thus pyts provides several tools to perform these transformations.
+
+
+### Installation
+
+#### Dependencies
+
+pyts requires:
+
+- Python (>= 3.7)
+- NumPy (>= 1.17.5)
+- SciPy (>= 1.3.0)
+- Scikit-Learn (>=0.22.1)
+- Joblib (>=0.12)
+- Numba (>=0.48.0)
+
+To run the examples Matplotlib (>=2.0.0) is required.
+
+
+#### User installation
+
+If you already have a working installation of numpy, scipy, scikit-learn,
+joblib and numba, you can easily install pyts using ``pip``
+
+ pip install pyts
+
+or ``conda`` via the ``conda-forge`` channel
+
+ conda install -c conda-forge pyts
+
+You can also get the latest version of pyts by cloning the repository
+
+ git clone https://github.com/johannfaouzi/pyts.git
+ cd pyts
+ pip install .
+
+
+#### Testing
+
+After installation, you can launch the test suite from outside the source
+directory using pytest:
+
+ pytest pyts
+
+
+### Changelog
+
+See the [changelog](https://pyts.readthedocs.io/en/stable/changelog.html)
+for a history of notable changes to pyts.
+
+### Development
+
+The development of this package is in line with the one of the scikit-learn
+community. Therefore, you can refer to their
+[Development Guide](https://scikit-learn.org/stable/developers/). A slight
+difference is the use of Numba instead of Cython for optimization.
+
+### Documentation
+
+The section below gives some information about the implemented algorithms in pyts.
+For more information, please have a look at the
+[HTML documentation available via ReadTheDocs](https://pyts.readthedocs.io/).
+
+### Citation
+
+If you use pyts in a scientific publication, we would appreciate
+citations to the following [paper](http://www.jmlr.org/papers/v21/19-763.html):
+```
+Johann Faouzi and Hicham Janati. pyts: A python package for time series classification.
+Journal of Machine Learning Research, 21(46):1−6, 2020.
+```
+
+Bibtex entry:
+```
+@article{JMLR:v21:19-763,
+ author = {Johann Faouzi and Hicham Janati},
+ title = {pyts: A Python Package for Time Series Classification},
+ journal = {Journal of Machine Learning Research},
+ year = {2020},
+ volume = {21},
+ number = {46},
+ pages = {1-6},
+ url = {http://jmlr.org/papers/v21/19-763.html}
+}
+```
+
+### Implemented features
+
+**Note: the content described in this section corresponds to the main branch,
+not the latest released version. You may have to install the latest version
+to use some of these features.**
+
+pyts consists of the following modules:
+
+- `approximation`: This module provides implementations of algorithms that
+approximate time series. Implemented algorithms are
+[Piecewise Aggregate Approximation](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.PiecewiseAggregateApproximation.html),
+[Symbolic Aggregate approXimation](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.SymbolicAggregateApproximation.html),
+[Discrete Fourier Transform](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.DiscreteFourierTransform.html),
+[Multiple Coefficient Binning](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.MultipleCoefficientBinning.html) and
+[Symbolic Fourier Approximation](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.SymbolicFourierApproximation.html).
+
+- `bag_of_words`: This module provide tools to transform time series into bags
+of words. Implemented algorithms are
+[WordExtractor](https://pyts.readthedocs.io/en/latest/generated/pyts.bag_of_words.WordExtractor.html) and
+[BagOfWords](https://pyts.readthedocs.io/en/latest/generated/pyts.bag_of_words.BagOfWords.html).
+
+
+- `classification`: This module provides implementations of algorithms that
+can classify time series. Implemented algorithms are
+[KNeighborsClassifier](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.KNeighborsClassifier.html),
+[SAXVSM](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.SAXVSM.html),
+[BOSSVS](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.BOSSVS.html),
+[LearningShapelets](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.LearningShapelets.html),
+[TimeSeriesForest](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.TimeSeriesForest.html) and
+[TSBF](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.TSBF.html).
+
+- `datasets`: This module provides utilities to make or load toy datasets,
+as well as fetching datasets from the
+[UEA & UCR Time Series Classification Repository](http://www.timeseriesclassification.com).
+
+- `decomposition`: This module provides implementations of algorithms that
+decompose a time series into several time series. The only implemented
+algorithm is
+[Singular Spectrum Analysis](https://pyts.readthedocs.io/en/latest/generated/pyts.decomposition.SingularSpectrumAnalysis.html).
+
+- `image`: This module provides implementations of algorithms that transform
+time series into images. Implemented algorithms are
+[Recurrence Plot](https://pyts.readthedocs.io/en/latest/generated/pyts.image.RecurrencePlot.html),
+[Gramian Angular Field](https://pyts.readthedocs.io/en/latest/generated/pyts.image.GramianAngularField.html) and
+[Markov Transition Field](https://pyts.readthedocs.io/en/latest/generated/pyts.image.MarkovTransitionField.html).
+
+- `metrics`: This module provides implementations of metrics that are specific
+to time series. Implemented metrics are
+[Dynamic Time Warping](https://pyts.readthedocs.io/en/latest/generated/pyts.metrics.dtw.html)
+with several variants and the
+[BOSS](https://pyts.readthedocs.io/en/latest/generated/pyts.metrics.boss.html)
+metric.
+
+- `multivariate`: This modules provides utilities to deal with multivariate
+time series. Available tools are
+[MultivariateTransformer](https://pyts.readthedocs.io/en/latest/generated/pyts.multivariate.transformation.MultivariateTransformer.html) and
+[MultivariateClassifier](https://pyts.readthedocs.io/en/latest/generated/pyts.multivariate.classification.MultivariateClassifier.html)
+to transform and classify multivariate time series using tools for univariate
+time series respectively, as well as
+[JointRecurrencePlot](https://pyts.readthedocs.io/en/latest/generated/pyts.multivariate.image.JointRecurrencePlot.html) and
+[WEASEL+MUSE](https://pyts.readthedocs.io/en/latest/generated/pyts.multivariate.transformation.WEASELMUSE.html).
+
+- `preprocessing`: This module provides most of the scikit-learn preprocessing
+tools but applied sample-wise (i.e. to each time series independently) instead
+of feature-wise, as well as an
+[imputer](https://pyts.readthedocs.io/en/latest/generated/pyts.preprocessing.InterpolationImputer.html)
+of missing values using interpolation. More information is available at the
+[pyts.preprocessing API documentation](https://pyts.readthedocs.io/en/latest/api.html#module-pyts.preprocessing).
+
+- `transformation`: This module provides implementations of algorithms that
+transform a data set of time series with shape `(n_samples, n_timestamps)` into
+a data set with shape `(n_samples, n_extracted_features)`. Implemented algorithms are
+[BagOfPatterns](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.BagOfPatterns.html),
+[BOSS](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.BOSS.html),
+[ShapeletTransform](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.ShapeletTransform.html),
+[WEASEL](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.WEASEL.html) and
+[ROCKET](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.ROCKET.html).
+
+- `utils`: a simple module with
+[utility functions](https://pyts.readthedocs.io/en/latest/api.html#module-pyts.utils).
+
+
+
+
+%package -n python3-pyts
+Summary: A python package for time series classification
+Provides: python-pyts
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-pyts
+[![Build Status](https://dev.azure.com/johannfaouzi0034/johannfaouzi/_apis/build/status/johannfaouzi.pyts?branchName=main)](https://dev.azure.com/johannfaouzi0034/johannfaouzi/_build/latest?definitionId=1&branchName=main)
+[![Documentation Status](https://readthedocs.org/projects/pyts/badge/?version=latest)](https://pyts.readthedocs.io/)
+[![Codecov](https://codecov.io/gh/johannfaouzi/pyts/branch/main/graph/badge.svg)](https://codecov.io/gh/johannfaouzi/pyts)
+[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pyts.svg)](https://img.shields.io/pypi/pyversions/pyts.svg)
+[![PyPI version](https://badge.fury.io/py/pyts.svg)](https://badge.fury.io/py/pyts)
+[![Conda Version](https://img.shields.io/conda/vn/conda-forge/pyts.svg)](https://anaconda.org/conda-forge/pyts)
+[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/johannfaouzi/pyts.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/johannfaouzi/pyts/context:python)
+[![Gitter](https://badges.gitter.im/johann-faouzi/community.svg)](https://gitter.im/johann-faouzi/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1244152.svg)](https://doi.org/10.5281/zenodo.1244152)
+
+## pyts: a Python package for time series classification
+
+pyts is a Python package for time series classification. It
+aims to make time series classification easily accessible by providing
+preprocessing and utility tools, and implementations of
+state-of-the-art algorithms. Most of these algorithms transform time series,
+thus pyts provides several tools to perform these transformations.
+
+
+### Installation
+
+#### Dependencies
+
+pyts requires:
+
+- Python (>= 3.7)
+- NumPy (>= 1.17.5)
+- SciPy (>= 1.3.0)
+- Scikit-Learn (>=0.22.1)
+- Joblib (>=0.12)
+- Numba (>=0.48.0)
+
+To run the examples Matplotlib (>=2.0.0) is required.
+
+
+#### User installation
+
+If you already have a working installation of numpy, scipy, scikit-learn,
+joblib and numba, you can easily install pyts using ``pip``
+
+ pip install pyts
+
+or ``conda`` via the ``conda-forge`` channel
+
+ conda install -c conda-forge pyts
+
+You can also get the latest version of pyts by cloning the repository
+
+ git clone https://github.com/johannfaouzi/pyts.git
+ cd pyts
+ pip install .
+
+
+#### Testing
+
+After installation, you can launch the test suite from outside the source
+directory using pytest:
+
+ pytest pyts
+
+
+### Changelog
+
+See the [changelog](https://pyts.readthedocs.io/en/stable/changelog.html)
+for a history of notable changes to pyts.
+
+### Development
+
+The development of this package is in line with the one of the scikit-learn
+community. Therefore, you can refer to their
+[Development Guide](https://scikit-learn.org/stable/developers/). A slight
+difference is the use of Numba instead of Cython for optimization.
+
+### Documentation
+
+The section below gives some information about the implemented algorithms in pyts.
+For more information, please have a look at the
+[HTML documentation available via ReadTheDocs](https://pyts.readthedocs.io/).
+
+### Citation
+
+If you use pyts in a scientific publication, we would appreciate
+citations to the following [paper](http://www.jmlr.org/papers/v21/19-763.html):
+```
+Johann Faouzi and Hicham Janati. pyts: A python package for time series classification.
+Journal of Machine Learning Research, 21(46):1−6, 2020.
+```
+
+Bibtex entry:
+```
+@article{JMLR:v21:19-763,
+ author = {Johann Faouzi and Hicham Janati},
+ title = {pyts: A Python Package for Time Series Classification},
+ journal = {Journal of Machine Learning Research},
+ year = {2020},
+ volume = {21},
+ number = {46},
+ pages = {1-6},
+ url = {http://jmlr.org/papers/v21/19-763.html}
+}
+```
+
+### Implemented features
+
+**Note: the content described in this section corresponds to the main branch,
+not the latest released version. You may have to install the latest version
+to use some of these features.**
+
+pyts consists of the following modules:
+
+- `approximation`: This module provides implementations of algorithms that
+approximate time series. Implemented algorithms are
+[Piecewise Aggregate Approximation](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.PiecewiseAggregateApproximation.html),
+[Symbolic Aggregate approXimation](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.SymbolicAggregateApproximation.html),
+[Discrete Fourier Transform](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.DiscreteFourierTransform.html),
+[Multiple Coefficient Binning](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.MultipleCoefficientBinning.html) and
+[Symbolic Fourier Approximation](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.SymbolicFourierApproximation.html).
+
+- `bag_of_words`: This module provide tools to transform time series into bags
+of words. Implemented algorithms are
+[WordExtractor](https://pyts.readthedocs.io/en/latest/generated/pyts.bag_of_words.WordExtractor.html) and
+[BagOfWords](https://pyts.readthedocs.io/en/latest/generated/pyts.bag_of_words.BagOfWords.html).
+
+
+- `classification`: This module provides implementations of algorithms that
+can classify time series. Implemented algorithms are
+[KNeighborsClassifier](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.KNeighborsClassifier.html),
+[SAXVSM](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.SAXVSM.html),
+[BOSSVS](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.BOSSVS.html),
+[LearningShapelets](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.LearningShapelets.html),
+[TimeSeriesForest](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.TimeSeriesForest.html) and
+[TSBF](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.TSBF.html).
+
+- `datasets`: This module provides utilities to make or load toy datasets,
+as well as fetching datasets from the
+[UEA & UCR Time Series Classification Repository](http://www.timeseriesclassification.com).
+
+- `decomposition`: This module provides implementations of algorithms that
+decompose a time series into several time series. The only implemented
+algorithm is
+[Singular Spectrum Analysis](https://pyts.readthedocs.io/en/latest/generated/pyts.decomposition.SingularSpectrumAnalysis.html).
+
+- `image`: This module provides implementations of algorithms that transform
+time series into images. Implemented algorithms are
+[Recurrence Plot](https://pyts.readthedocs.io/en/latest/generated/pyts.image.RecurrencePlot.html),
+[Gramian Angular Field](https://pyts.readthedocs.io/en/latest/generated/pyts.image.GramianAngularField.html) and
+[Markov Transition Field](https://pyts.readthedocs.io/en/latest/generated/pyts.image.MarkovTransitionField.html).
+
+- `metrics`: This module provides implementations of metrics that are specific
+to time series. Implemented metrics are
+[Dynamic Time Warping](https://pyts.readthedocs.io/en/latest/generated/pyts.metrics.dtw.html)
+with several variants and the
+[BOSS](https://pyts.readthedocs.io/en/latest/generated/pyts.metrics.boss.html)
+metric.
+
+- `multivariate`: This modules provides utilities to deal with multivariate
+time series. Available tools are
+[MultivariateTransformer](https://pyts.readthedocs.io/en/latest/generated/pyts.multivariate.transformation.MultivariateTransformer.html) and
+[MultivariateClassifier](https://pyts.readthedocs.io/en/latest/generated/pyts.multivariate.classification.MultivariateClassifier.html)
+to transform and classify multivariate time series using tools for univariate
+time series respectively, as well as
+[JointRecurrencePlot](https://pyts.readthedocs.io/en/latest/generated/pyts.multivariate.image.JointRecurrencePlot.html) and
+[WEASEL+MUSE](https://pyts.readthedocs.io/en/latest/generated/pyts.multivariate.transformation.WEASELMUSE.html).
+
+- `preprocessing`: This module provides most of the scikit-learn preprocessing
+tools but applied sample-wise (i.e. to each time series independently) instead
+of feature-wise, as well as an
+[imputer](https://pyts.readthedocs.io/en/latest/generated/pyts.preprocessing.InterpolationImputer.html)
+of missing values using interpolation. More information is available at the
+[pyts.preprocessing API documentation](https://pyts.readthedocs.io/en/latest/api.html#module-pyts.preprocessing).
+
+- `transformation`: This module provides implementations of algorithms that
+transform a data set of time series with shape `(n_samples, n_timestamps)` into
+a data set with shape `(n_samples, n_extracted_features)`. Implemented algorithms are
+[BagOfPatterns](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.BagOfPatterns.html),
+[BOSS](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.BOSS.html),
+[ShapeletTransform](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.ShapeletTransform.html),
+[WEASEL](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.WEASEL.html) and
+[ROCKET](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.ROCKET.html).
+
+- `utils`: a simple module with
+[utility functions](https://pyts.readthedocs.io/en/latest/api.html#module-pyts.utils).
+
+
+
+
+%package help
+Summary: Development documents and examples for pyts
+Provides: python3-pyts-doc
+%description help
+[![Build Status](https://dev.azure.com/johannfaouzi0034/johannfaouzi/_apis/build/status/johannfaouzi.pyts?branchName=main)](https://dev.azure.com/johannfaouzi0034/johannfaouzi/_build/latest?definitionId=1&branchName=main)
+[![Documentation Status](https://readthedocs.org/projects/pyts/badge/?version=latest)](https://pyts.readthedocs.io/)
+[![Codecov](https://codecov.io/gh/johannfaouzi/pyts/branch/main/graph/badge.svg)](https://codecov.io/gh/johannfaouzi/pyts)
+[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pyts.svg)](https://img.shields.io/pypi/pyversions/pyts.svg)
+[![PyPI version](https://badge.fury.io/py/pyts.svg)](https://badge.fury.io/py/pyts)
+[![Conda Version](https://img.shields.io/conda/vn/conda-forge/pyts.svg)](https://anaconda.org/conda-forge/pyts)
+[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/johannfaouzi/pyts.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/johannfaouzi/pyts/context:python)
+[![Gitter](https://badges.gitter.im/johann-faouzi/community.svg)](https://gitter.im/johann-faouzi/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1244152.svg)](https://doi.org/10.5281/zenodo.1244152)
+
+## pyts: a Python package for time series classification
+
+pyts is a Python package for time series classification. It
+aims to make time series classification easily accessible by providing
+preprocessing and utility tools, and implementations of
+state-of-the-art algorithms. Most of these algorithms transform time series,
+thus pyts provides several tools to perform these transformations.
+
+
+### Installation
+
+#### Dependencies
+
+pyts requires:
+
+- Python (>= 3.7)
+- NumPy (>= 1.17.5)
+- SciPy (>= 1.3.0)
+- Scikit-Learn (>=0.22.1)
+- Joblib (>=0.12)
+- Numba (>=0.48.0)
+
+To run the examples Matplotlib (>=2.0.0) is required.
+
+
+#### User installation
+
+If you already have a working installation of numpy, scipy, scikit-learn,
+joblib and numba, you can easily install pyts using ``pip``
+
+ pip install pyts
+
+or ``conda`` via the ``conda-forge`` channel
+
+ conda install -c conda-forge pyts
+
+You can also get the latest version of pyts by cloning the repository
+
+ git clone https://github.com/johannfaouzi/pyts.git
+ cd pyts
+ pip install .
+
+
+#### Testing
+
+After installation, you can launch the test suite from outside the source
+directory using pytest:
+
+ pytest pyts
+
+
+### Changelog
+
+See the [changelog](https://pyts.readthedocs.io/en/stable/changelog.html)
+for a history of notable changes to pyts.
+
+### Development
+
+The development of this package is in line with the one of the scikit-learn
+community. Therefore, you can refer to their
+[Development Guide](https://scikit-learn.org/stable/developers/). A slight
+difference is the use of Numba instead of Cython for optimization.
+
+### Documentation
+
+The section below gives some information about the implemented algorithms in pyts.
+For more information, please have a look at the
+[HTML documentation available via ReadTheDocs](https://pyts.readthedocs.io/).
+
+### Citation
+
+If you use pyts in a scientific publication, we would appreciate
+citations to the following [paper](http://www.jmlr.org/papers/v21/19-763.html):
+```
+Johann Faouzi and Hicham Janati. pyts: A python package for time series classification.
+Journal of Machine Learning Research, 21(46):1−6, 2020.
+```
+
+Bibtex entry:
+```
+@article{JMLR:v21:19-763,
+ author = {Johann Faouzi and Hicham Janati},
+ title = {pyts: A Python Package for Time Series Classification},
+ journal = {Journal of Machine Learning Research},
+ year = {2020},
+ volume = {21},
+ number = {46},
+ pages = {1-6},
+ url = {http://jmlr.org/papers/v21/19-763.html}
+}
+```
+
+### Implemented features
+
+**Note: the content described in this section corresponds to the main branch,
+not the latest released version. You may have to install the latest version
+to use some of these features.**
+
+pyts consists of the following modules:
+
+- `approximation`: This module provides implementations of algorithms that
+approximate time series. Implemented algorithms are
+[Piecewise Aggregate Approximation](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.PiecewiseAggregateApproximation.html),
+[Symbolic Aggregate approXimation](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.SymbolicAggregateApproximation.html),
+[Discrete Fourier Transform](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.DiscreteFourierTransform.html),
+[Multiple Coefficient Binning](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.MultipleCoefficientBinning.html) and
+[Symbolic Fourier Approximation](https://pyts.readthedocs.io/en/latest/generated/pyts.approximation.SymbolicFourierApproximation.html).
+
+- `bag_of_words`: This module provide tools to transform time series into bags
+of words. Implemented algorithms are
+[WordExtractor](https://pyts.readthedocs.io/en/latest/generated/pyts.bag_of_words.WordExtractor.html) and
+[BagOfWords](https://pyts.readthedocs.io/en/latest/generated/pyts.bag_of_words.BagOfWords.html).
+
+
+- `classification`: This module provides implementations of algorithms that
+can classify time series. Implemented algorithms are
+[KNeighborsClassifier](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.KNeighborsClassifier.html),
+[SAXVSM](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.SAXVSM.html),
+[BOSSVS](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.BOSSVS.html),
+[LearningShapelets](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.LearningShapelets.html),
+[TimeSeriesForest](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.TimeSeriesForest.html) and
+[TSBF](https://pyts.readthedocs.io/en/latest/generated/pyts.classification.TSBF.html).
+
+- `datasets`: This module provides utilities to make or load toy datasets,
+as well as fetching datasets from the
+[UEA & UCR Time Series Classification Repository](http://www.timeseriesclassification.com).
+
+- `decomposition`: This module provides implementations of algorithms that
+decompose a time series into several time series. The only implemented
+algorithm is
+[Singular Spectrum Analysis](https://pyts.readthedocs.io/en/latest/generated/pyts.decomposition.SingularSpectrumAnalysis.html).
+
+- `image`: This module provides implementations of algorithms that transform
+time series into images. Implemented algorithms are
+[Recurrence Plot](https://pyts.readthedocs.io/en/latest/generated/pyts.image.RecurrencePlot.html),
+[Gramian Angular Field](https://pyts.readthedocs.io/en/latest/generated/pyts.image.GramianAngularField.html) and
+[Markov Transition Field](https://pyts.readthedocs.io/en/latest/generated/pyts.image.MarkovTransitionField.html).
+
+- `metrics`: This module provides implementations of metrics that are specific
+to time series. Implemented metrics are
+[Dynamic Time Warping](https://pyts.readthedocs.io/en/latest/generated/pyts.metrics.dtw.html)
+with several variants and the
+[BOSS](https://pyts.readthedocs.io/en/latest/generated/pyts.metrics.boss.html)
+metric.
+
+- `multivariate`: This modules provides utilities to deal with multivariate
+time series. Available tools are
+[MultivariateTransformer](https://pyts.readthedocs.io/en/latest/generated/pyts.multivariate.transformation.MultivariateTransformer.html) and
+[MultivariateClassifier](https://pyts.readthedocs.io/en/latest/generated/pyts.multivariate.classification.MultivariateClassifier.html)
+to transform and classify multivariate time series using tools for univariate
+time series respectively, as well as
+[JointRecurrencePlot](https://pyts.readthedocs.io/en/latest/generated/pyts.multivariate.image.JointRecurrencePlot.html) and
+[WEASEL+MUSE](https://pyts.readthedocs.io/en/latest/generated/pyts.multivariate.transformation.WEASELMUSE.html).
+
+- `preprocessing`: This module provides most of the scikit-learn preprocessing
+tools but applied sample-wise (i.e. to each time series independently) instead
+of feature-wise, as well as an
+[imputer](https://pyts.readthedocs.io/en/latest/generated/pyts.preprocessing.InterpolationImputer.html)
+of missing values using interpolation. More information is available at the
+[pyts.preprocessing API documentation](https://pyts.readthedocs.io/en/latest/api.html#module-pyts.preprocessing).
+
+- `transformation`: This module provides implementations of algorithms that
+transform a data set of time series with shape `(n_samples, n_timestamps)` into
+a data set with shape `(n_samples, n_extracted_features)`. Implemented algorithms are
+[BagOfPatterns](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.BagOfPatterns.html),
+[BOSS](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.BOSS.html),
+[ShapeletTransform](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.ShapeletTransform.html),
+[WEASEL](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.WEASEL.html) and
+[ROCKET](https://pyts.readthedocs.io/en/latest/generated/pyts.transformation.ROCKET.html).
+
+- `utils`: a simple module with
+[utility functions](https://pyts.readthedocs.io/en/latest/api.html#module-pyts.utils).
+
+
+
+
+%prep
+%autosetup -n pyts-0.12.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-pyts -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.12.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..f09ccc0
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+697e8815fa739e3b4f8b2ab510477444 pyts-0.12.0.tar.gz