diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-10 07:23:20 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-10 07:23:20 +0000 |
commit | 4b8d4c002c983a965f1536b12ff37ce0c39718c2 (patch) | |
tree | 63e40d227c1789b7db44dcdcd50d33a559a6a1d5 | |
parent | f2bae1681a98b366c5e1d1c3668dbcde6f37be82 (diff) |
automatic import of python-root-numpy
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-root-numpy.spec | 189 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 191 insertions, 0 deletions
@@ -0,0 +1 @@ +/root_numpy-4.8.0.tar.gz diff --git a/python-root-numpy.spec b/python-root-numpy.spec new file mode 100644 index 0000000..8637eff --- /dev/null +++ b/python-root-numpy.spec @@ -0,0 +1,189 @@ +%global _empty_manifest_terminate_build 0 +Name: python-root-numpy +Version: 4.8.0 +Release: 1 +Summary: The interface between ROOT and NumPy +License: new BSD +URL: http://scikit-hep.org/root_numpy +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d5/5f/82f5111c22599676eb8b5f9b1bf85c38dcc7995d52cd6b4a8f5f5caa4659/root_numpy-4.8.0.tar.gz +BuildArch: noarch + + +%description +.. image:: https://img.shields.io/pypi/v/root_numpy.svg + :target: https://pypi.python.org/pypi/root_numpy +.. image:: https://api.travis-ci.org/scikit-hep/root_numpy.png + :target: https://travis-ci.org/scikit-hep/root_numpy +.. image:: https://coveralls.io/repos/github/scikit-hep/root_numpy/badge.svg?branch=master + :target: https://coveralls.io/github/scikit-hep/root_numpy?branch=master +.. image:: https://landscape.io/github/scikit-hep/root_numpy/master/landscape.svg?style=flat + :target: https://landscape.io/github/scikit-hep/root_numpy/master +.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.592881.svg + :target: https://doi.org/10.5281/zenodo.592881 + +root_numpy is a Python extension module that provides an efficient interface +between `ROOT <http://root.cern.ch/>`_ and `NumPy <http://www.numpy.org/>`_. +root_numpy's internals are compiled C++ and can therefore handle large amounts +of data much faster than equivalent pure Python implementations. + +With your ROOT data in NumPy form, make use of NumPy's `broad library +<http://docs.scipy.org/doc/numpy/reference/>`_, including fancy indexing, +slicing, broadcasting, random sampling, sorting, shape transformations, linear +algebra operations, and more. See this `tutorial +<https://docs.scipy.org/doc/numpy-dev/user/quickstart.html>`_ to get started. +NumPy is the fundamental library of the scientific Python ecosystem. Using +NumPy arrays opens up many new possibilities beyond what ROOT offers. Convert +your TTrees into NumPy arrays and use `SciPy <http://www.scipy.org/>`_ for +numerical integration and optimization, `matplotlib <http://matplotlib.org/>`_ +for plotting, `pandas <http://pandas.pydata.org/>`_ for data analysis, +`statsmodels <http://statsmodels.sourceforge.net/>`_ for statistical modelling, +`scikit-learn <http://scikit-learn.org/>`_ for machine learning, and perform +quick exploratory analysis in a `Jupyter notebook <https://jupyter.org/>`_. + +At the core of root_numpy are powerful and flexible functions for converting +`ROOT TTrees <https://root.cern.ch/doc/master/classTTree.html>`_ into +`structured NumPy arrays +<http://docs.scipy.org/doc/numpy/user/basics.rec.html>`_ as well as converting +NumPy arrays back into ROOT TTrees. root_numpy can convert branches of strings +and basic types such as bool, int, float, double, etc. as well as +variable-length and fixed-length multidimensional arrays and 1D or 2D vectors +of basic types and strings. root_numpy can also create columns in the output +array that are expressions involving the TTree branches similar to +``TTree::Draw()``. + +%package -n python3-root-numpy +Summary: The interface between ROOT and NumPy +Provides: python-root-numpy +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-root-numpy +.. image:: https://img.shields.io/pypi/v/root_numpy.svg + :target: https://pypi.python.org/pypi/root_numpy +.. image:: https://api.travis-ci.org/scikit-hep/root_numpy.png + :target: https://travis-ci.org/scikit-hep/root_numpy +.. image:: https://coveralls.io/repos/github/scikit-hep/root_numpy/badge.svg?branch=master + :target: https://coveralls.io/github/scikit-hep/root_numpy?branch=master +.. image:: https://landscape.io/github/scikit-hep/root_numpy/master/landscape.svg?style=flat + :target: https://landscape.io/github/scikit-hep/root_numpy/master +.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.592881.svg + :target: https://doi.org/10.5281/zenodo.592881 + +root_numpy is a Python extension module that provides an efficient interface +between `ROOT <http://root.cern.ch/>`_ and `NumPy <http://www.numpy.org/>`_. +root_numpy's internals are compiled C++ and can therefore handle large amounts +of data much faster than equivalent pure Python implementations. + +With your ROOT data in NumPy form, make use of NumPy's `broad library +<http://docs.scipy.org/doc/numpy/reference/>`_, including fancy indexing, +slicing, broadcasting, random sampling, sorting, shape transformations, linear +algebra operations, and more. See this `tutorial +<https://docs.scipy.org/doc/numpy-dev/user/quickstart.html>`_ to get started. +NumPy is the fundamental library of the scientific Python ecosystem. Using +NumPy arrays opens up many new possibilities beyond what ROOT offers. Convert +your TTrees into NumPy arrays and use `SciPy <http://www.scipy.org/>`_ for +numerical integration and optimization, `matplotlib <http://matplotlib.org/>`_ +for plotting, `pandas <http://pandas.pydata.org/>`_ for data analysis, +`statsmodels <http://statsmodels.sourceforge.net/>`_ for statistical modelling, +`scikit-learn <http://scikit-learn.org/>`_ for machine learning, and perform +quick exploratory analysis in a `Jupyter notebook <https://jupyter.org/>`_. + +At the core of root_numpy are powerful and flexible functions for converting +`ROOT TTrees <https://root.cern.ch/doc/master/classTTree.html>`_ into +`structured NumPy arrays +<http://docs.scipy.org/doc/numpy/user/basics.rec.html>`_ as well as converting +NumPy arrays back into ROOT TTrees. root_numpy can convert branches of strings +and basic types such as bool, int, float, double, etc. as well as +variable-length and fixed-length multidimensional arrays and 1D or 2D vectors +of basic types and strings. root_numpy can also create columns in the output +array that are expressions involving the TTree branches similar to +``TTree::Draw()``. + +%package help +Summary: Development documents and examples for root-numpy +Provides: python3-root-numpy-doc +%description help +.. image:: https://img.shields.io/pypi/v/root_numpy.svg + :target: https://pypi.python.org/pypi/root_numpy +.. image:: https://api.travis-ci.org/scikit-hep/root_numpy.png + :target: https://travis-ci.org/scikit-hep/root_numpy +.. image:: https://coveralls.io/repos/github/scikit-hep/root_numpy/badge.svg?branch=master + :target: https://coveralls.io/github/scikit-hep/root_numpy?branch=master +.. image:: https://landscape.io/github/scikit-hep/root_numpy/master/landscape.svg?style=flat + :target: https://landscape.io/github/scikit-hep/root_numpy/master +.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.592881.svg + :target: https://doi.org/10.5281/zenodo.592881 + +root_numpy is a Python extension module that provides an efficient interface +between `ROOT <http://root.cern.ch/>`_ and `NumPy <http://www.numpy.org/>`_. +root_numpy's internals are compiled C++ and can therefore handle large amounts +of data much faster than equivalent pure Python implementations. + +With your ROOT data in NumPy form, make use of NumPy's `broad library +<http://docs.scipy.org/doc/numpy/reference/>`_, including fancy indexing, +slicing, broadcasting, random sampling, sorting, shape transformations, linear +algebra operations, and more. See this `tutorial +<https://docs.scipy.org/doc/numpy-dev/user/quickstart.html>`_ to get started. +NumPy is the fundamental library of the scientific Python ecosystem. Using +NumPy arrays opens up many new possibilities beyond what ROOT offers. Convert +your TTrees into NumPy arrays and use `SciPy <http://www.scipy.org/>`_ for +numerical integration and optimization, `matplotlib <http://matplotlib.org/>`_ +for plotting, `pandas <http://pandas.pydata.org/>`_ for data analysis, +`statsmodels <http://statsmodels.sourceforge.net/>`_ for statistical modelling, +`scikit-learn <http://scikit-learn.org/>`_ for machine learning, and perform +quick exploratory analysis in a `Jupyter notebook <https://jupyter.org/>`_. + +At the core of root_numpy are powerful and flexible functions for converting +`ROOT TTrees <https://root.cern.ch/doc/master/classTTree.html>`_ into +`structured NumPy arrays +<http://docs.scipy.org/doc/numpy/user/basics.rec.html>`_ as well as converting +NumPy arrays back into ROOT TTrees. root_numpy can convert branches of strings +and basic types such as bool, int, float, double, etc. as well as +variable-length and fixed-length multidimensional arrays and 1D or 2D vectors +of basic types and strings. root_numpy can also create columns in the output +array that are expressions involving the TTree branches similar to +``TTree::Draw()``. + +%prep +%autosetup -n root-numpy-4.8.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-root-numpy -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 4.8.0-1 +- Package Spec generated @@ -0,0 +1 @@ +a8744cf13f868ddc2762f84bfc0e23fb root_numpy-4.8.0.tar.gz |