diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-29 13:16:11 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-29 13:16:11 +0000 |
commit | e832ba632a0db6e11d2e237571e89d4dd2bc1073 (patch) | |
tree | 5e3f50417bb3fb2c7d47ce1a37d8e60572be22d0 | |
parent | f484729beb0f78667822f999fde59472d2213cca (diff) |
automatic import of python-string-kernels
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-string-kernels.spec | 207 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 209 insertions, 0 deletions
@@ -0,0 +1 @@ +/string-kernels-1.1.2.tar.gz diff --git a/python-string-kernels.spec b/python-string-kernels.spec new file mode 100644 index 0000000..7d566d3 --- /dev/null +++ b/python-string-kernels.spec @@ -0,0 +1,207 @@ +%global _empty_manifest_terminate_build 0 +Name: python-string-kernels +Version: 1.1.2 +Release: 1 +Summary: Polynomial String Kernel and linear time String Kernel. Supports multithreading and is compatible with Scikit-Learn SVMs. +License: Academic Free License (AFL) +URL: https://github.com/weekend37/string-kernels +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ff/e7/04765217cdeced887f495c6833a93227d89f8342b1254f8979d294cb8874/string-kernels-1.1.2.tar.gz +BuildArch: noarch + + +%description +# String Kernels + +This package contains an implementation of the **Polynomial String Kernel** and a linear time **String Kernel** algorithm as described in our paper, [High Resolution Ancestry Deconvolution for Next Generation Genomic Data](https://www.biorxiv.org/content/10.1101/2021.09.19.460980v1). <br/><br/> + +<img caption="String Kernel Computations" src="https://raw.githubusercontent.com/weekend37/string-kernels/master/doc/fig/triangular_numbers.png"> + +It offers + +- Linear time computation of two effective string kernels. + +- Compatibility with Scikit-Learn's Support Vector Machines (easy plug-in). + +- Multithreading. + +## Usage + +To install the package, execute from the command line + +``` +pip install string-kernels +``` + +And then you're all set! + +Assuming you have [Scikit-Learn](https://scikit-learn.org/) already installed, you can use Lodhi's string kernel via + +```python +from sklearn import svm +from stringkernels.kernels import string_kernel +model = svm.SVC(kernel=string_kernel()) +``` + +and the polynomial string kernel, + +```python +from sklearn import svm +from stringkernels.kernels import polynomial_string_kernel +model = svm.SVC(kernel=polynomial_string_kernel()) +``` + +For morer information read the [docs](https://github.com/weekend37/string-kernels/blob/master/doc/docs.md) or take a look at the notebook [example.ipynb](https://github.com/weekend37/string-kernels/blob/master/example.ipynb) for further demonstration of usage. + +If you end up using this in your research we kindly ask you to cite us! :) + + + + +%package -n python3-string-kernels +Summary: Polynomial String Kernel and linear time String Kernel. Supports multithreading and is compatible with Scikit-Learn SVMs. +Provides: python-string-kernels +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-string-kernels +# String Kernels + +This package contains an implementation of the **Polynomial String Kernel** and a linear time **String Kernel** algorithm as described in our paper, [High Resolution Ancestry Deconvolution for Next Generation Genomic Data](https://www.biorxiv.org/content/10.1101/2021.09.19.460980v1). <br/><br/> + +<img caption="String Kernel Computations" src="https://raw.githubusercontent.com/weekend37/string-kernels/master/doc/fig/triangular_numbers.png"> + +It offers + +- Linear time computation of two effective string kernels. + +- Compatibility with Scikit-Learn's Support Vector Machines (easy plug-in). + +- Multithreading. + +## Usage + +To install the package, execute from the command line + +``` +pip install string-kernels +``` + +And then you're all set! + +Assuming you have [Scikit-Learn](https://scikit-learn.org/) already installed, you can use Lodhi's string kernel via + +```python +from sklearn import svm +from stringkernels.kernels import string_kernel +model = svm.SVC(kernel=string_kernel()) +``` + +and the polynomial string kernel, + +```python +from sklearn import svm +from stringkernels.kernels import polynomial_string_kernel +model = svm.SVC(kernel=polynomial_string_kernel()) +``` + +For morer information read the [docs](https://github.com/weekend37/string-kernels/blob/master/doc/docs.md) or take a look at the notebook [example.ipynb](https://github.com/weekend37/string-kernels/blob/master/example.ipynb) for further demonstration of usage. + +If you end up using this in your research we kindly ask you to cite us! :) + + + + +%package help +Summary: Development documents and examples for string-kernels +Provides: python3-string-kernels-doc +%description help +# String Kernels + +This package contains an implementation of the **Polynomial String Kernel** and a linear time **String Kernel** algorithm as described in our paper, [High Resolution Ancestry Deconvolution for Next Generation Genomic Data](https://www.biorxiv.org/content/10.1101/2021.09.19.460980v1). <br/><br/> + +<img caption="String Kernel Computations" src="https://raw.githubusercontent.com/weekend37/string-kernels/master/doc/fig/triangular_numbers.png"> + +It offers + +- Linear time computation of two effective string kernels. + +- Compatibility with Scikit-Learn's Support Vector Machines (easy plug-in). + +- Multithreading. + +## Usage + +To install the package, execute from the command line + +``` +pip install string-kernels +``` + +And then you're all set! + +Assuming you have [Scikit-Learn](https://scikit-learn.org/) already installed, you can use Lodhi's string kernel via + +```python +from sklearn import svm +from stringkernels.kernels import string_kernel +model = svm.SVC(kernel=string_kernel()) +``` + +and the polynomial string kernel, + +```python +from sklearn import svm +from stringkernels.kernels import polynomial_string_kernel +model = svm.SVC(kernel=polynomial_string_kernel()) +``` + +For morer information read the [docs](https://github.com/weekend37/string-kernels/blob/master/doc/docs.md) or take a look at the notebook [example.ipynb](https://github.com/weekend37/string-kernels/blob/master/example.ipynb) for further demonstration of usage. + +If you end up using this in your research we kindly ask you to cite us! :) + + + + +%prep +%autosetup -n string-kernels-1.1.2 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-string-kernels -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.2-1 +- Package Spec generated @@ -0,0 +1 @@ +5d0c76313c841b7c0bc869cb19b431f8 string-kernels-1.1.2.tar.gz |