diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-04-10 15:24:49 +0000 | 
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-04-10 15:24:49 +0000 | 
| commit | 5b4eb617ed0ad50c78bea607d5d789f412450da7 (patch) | |
| tree | 05c8118aa8621e99096e443399dd98672cd76f45 | |
| parent | 3d7b1482c04bd436153e221f88bf26534d71721b (diff) | |
automatic import of python-tensorflow-recommenders
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-tensorflow-recommenders.spec | 379 | ||||
| -rw-r--r-- | sources | 1 | 
3 files changed, 381 insertions, 0 deletions
| @@ -0,0 +1 @@ +/tensorflow-recommenders-0.7.3.tar.gz diff --git a/python-tensorflow-recommenders.spec b/python-tensorflow-recommenders.spec new file mode 100644 index 0000000..9eef616 --- /dev/null +++ b/python-tensorflow-recommenders.spec @@ -0,0 +1,379 @@ +%global _empty_manifest_terminate_build 0 +Name:		python-tensorflow-recommenders +Version:	0.7.3 +Release:	1 +Summary:	Tensorflow Recommenders, a TensorFlow library for recommender systems. +License:	Apache 2.0 +URL:		https://github.com/tensorflow/recommenders +Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/c0/d0/50dbb1a2b9d775a580441c45269b71b60aea3b0358f8131ae3f5c8e4ccec/tensorflow-recommenders-0.7.3.tar.gz +BuildArch:	noarch + +Requires:	python3-absl-py +Requires:	python3-tensorflow +Requires:	python3-tensorflow-macos +Requires:	python3-annoy +Requires:	python3-fire +Requires:	python3-scann +Requires:	python3-tensorflow-ranking + +%description +# TensorFlow Recommenders + + + + +[](https://pypi.python.org/pypi/tensorflow-recommenders/) + +TensorFlow Recommenders is a library for building recommender system models +using [TensorFlow](https://www.tensorflow.org). + +It helps with the full workflow of building a recommender system: data +preparation, model formulation, training, evaluation, and deployment. + +It's built on Keras and aims to have a gentle learning curve while still giving +you the flexibility to build complex models. + +## Installation + +Make sure you have TensorFlow 2.x installed, and install from `pip`: + +```shell +pip install tensorflow-recommenders +``` + +## Documentation + +Have a look at our +[tutorials](https://tensorflow.org/recommenders/examples/quickstart) and +[API reference](https://www.tensorflow.org/recommenders/api_docs/python/tfrs/). + +## Quick start + +Building a factorization model for the Movielens 100K dataset is very simple +([Colab](https://tensorflow.org/recommenders/examples/quickstart)): + +```python +from typing import Dict, Text + +import tensorflow as tf +import tensorflow_datasets as tfds +import tensorflow_recommenders as tfrs + +# Ratings data. +ratings = tfds.load('movielens/100k-ratings', split="train") +# Features of all the available movies. +movies = tfds.load('movielens/100k-movies', split="train") + +# Select the basic features. +ratings = ratings.map(lambda x: { +    "movie_id": tf.strings.to_number(x["movie_id"]), +    "user_id": tf.strings.to_number(x["user_id"]) +}) +movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"])) + +# Build a model. +class Model(tfrs.Model): + +  def __init__(self): +    super().__init__() + +    # Set up user representation. +    self.user_model = tf.keras.layers.Embedding( +        input_dim=2000, output_dim=64) +    # Set up movie representation. +    self.item_model = tf.keras.layers.Embedding( +        input_dim=2000, output_dim=64) +    # Set up a retrieval task and evaluation metrics over the +    # entire dataset of candidates. +    self.task = tfrs.tasks.Retrieval( +        metrics=tfrs.metrics.FactorizedTopK( +            candidates=movies.batch(128).map(self.item_model) +        ) +    ) + +  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor: + +    user_embeddings = self.user_model(features["user_id"]) +    movie_embeddings = self.item_model(features["movie_id"]) + +    return self.task(user_embeddings, movie_embeddings) + + +model = Model() +model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5)) + +# Randomly shuffle data and split between train and test. +tf.random.set_seed(42) +shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False) + +train = shuffled.take(80_000) +test = shuffled.skip(80_000).take(20_000) + +# Train. +model.fit(train.batch(4096), epochs=5) + +# Evaluate. +model.evaluate(test.batch(4096), return_dict=True) +``` + + + + +%package -n python3-tensorflow-recommenders +Summary:	Tensorflow Recommenders, a TensorFlow library for recommender systems. +Provides:	python-tensorflow-recommenders +BuildRequires:	python3-devel +BuildRequires:	python3-setuptools +BuildRequires:	python3-pip +%description -n python3-tensorflow-recommenders +# TensorFlow Recommenders + + + + +[](https://pypi.python.org/pypi/tensorflow-recommenders/) + +TensorFlow Recommenders is a library for building recommender system models +using [TensorFlow](https://www.tensorflow.org). + +It helps with the full workflow of building a recommender system: data +preparation, model formulation, training, evaluation, and deployment. + +It's built on Keras and aims to have a gentle learning curve while still giving +you the flexibility to build complex models. + +## Installation + +Make sure you have TensorFlow 2.x installed, and install from `pip`: + +```shell +pip install tensorflow-recommenders +``` + +## Documentation + +Have a look at our +[tutorials](https://tensorflow.org/recommenders/examples/quickstart) and +[API reference](https://www.tensorflow.org/recommenders/api_docs/python/tfrs/). + +## Quick start + +Building a factorization model for the Movielens 100K dataset is very simple +([Colab](https://tensorflow.org/recommenders/examples/quickstart)): + +```python +from typing import Dict, Text + +import tensorflow as tf +import tensorflow_datasets as tfds +import tensorflow_recommenders as tfrs + +# Ratings data. +ratings = tfds.load('movielens/100k-ratings', split="train") +# Features of all the available movies. +movies = tfds.load('movielens/100k-movies', split="train") + +# Select the basic features. +ratings = ratings.map(lambda x: { +    "movie_id": tf.strings.to_number(x["movie_id"]), +    "user_id": tf.strings.to_number(x["user_id"]) +}) +movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"])) + +# Build a model. +class Model(tfrs.Model): + +  def __init__(self): +    super().__init__() + +    # Set up user representation. +    self.user_model = tf.keras.layers.Embedding( +        input_dim=2000, output_dim=64) +    # Set up movie representation. +    self.item_model = tf.keras.layers.Embedding( +        input_dim=2000, output_dim=64) +    # Set up a retrieval task and evaluation metrics over the +    # entire dataset of candidates. +    self.task = tfrs.tasks.Retrieval( +        metrics=tfrs.metrics.FactorizedTopK( +            candidates=movies.batch(128).map(self.item_model) +        ) +    ) + +  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor: + +    user_embeddings = self.user_model(features["user_id"]) +    movie_embeddings = self.item_model(features["movie_id"]) + +    return self.task(user_embeddings, movie_embeddings) + + +model = Model() +model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5)) + +# Randomly shuffle data and split between train and test. +tf.random.set_seed(42) +shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False) + +train = shuffled.take(80_000) +test = shuffled.skip(80_000).take(20_000) + +# Train. +model.fit(train.batch(4096), epochs=5) + +# Evaluate. +model.evaluate(test.batch(4096), return_dict=True) +``` + + + + +%package help +Summary:	Development documents and examples for tensorflow-recommenders +Provides:	python3-tensorflow-recommenders-doc +%description help +# TensorFlow Recommenders + + + + +[](https://pypi.python.org/pypi/tensorflow-recommenders/) + +TensorFlow Recommenders is a library for building recommender system models +using [TensorFlow](https://www.tensorflow.org). + +It helps with the full workflow of building a recommender system: data +preparation, model formulation, training, evaluation, and deployment. + +It's built on Keras and aims to have a gentle learning curve while still giving +you the flexibility to build complex models. + +## Installation + +Make sure you have TensorFlow 2.x installed, and install from `pip`: + +```shell +pip install tensorflow-recommenders +``` + +## Documentation + +Have a look at our +[tutorials](https://tensorflow.org/recommenders/examples/quickstart) and +[API reference](https://www.tensorflow.org/recommenders/api_docs/python/tfrs/). + +## Quick start + +Building a factorization model for the Movielens 100K dataset is very simple +([Colab](https://tensorflow.org/recommenders/examples/quickstart)): + +```python +from typing import Dict, Text + +import tensorflow as tf +import tensorflow_datasets as tfds +import tensorflow_recommenders as tfrs + +# Ratings data. +ratings = tfds.load('movielens/100k-ratings', split="train") +# Features of all the available movies. +movies = tfds.load('movielens/100k-movies', split="train") + +# Select the basic features. +ratings = ratings.map(lambda x: { +    "movie_id": tf.strings.to_number(x["movie_id"]), +    "user_id": tf.strings.to_number(x["user_id"]) +}) +movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"])) + +# Build a model. +class Model(tfrs.Model): + +  def __init__(self): +    super().__init__() + +    # Set up user representation. +    self.user_model = tf.keras.layers.Embedding( +        input_dim=2000, output_dim=64) +    # Set up movie representation. +    self.item_model = tf.keras.layers.Embedding( +        input_dim=2000, output_dim=64) +    # Set up a retrieval task and evaluation metrics over the +    # entire dataset of candidates. +    self.task = tfrs.tasks.Retrieval( +        metrics=tfrs.metrics.FactorizedTopK( +            candidates=movies.batch(128).map(self.item_model) +        ) +    ) + +  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor: + +    user_embeddings = self.user_model(features["user_id"]) +    movie_embeddings = self.item_model(features["movie_id"]) + +    return self.task(user_embeddings, movie_embeddings) + + +model = Model() +model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5)) + +# Randomly shuffle data and split between train and test. +tf.random.set_seed(42) +shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False) + +train = shuffled.take(80_000) +test = shuffled.skip(80_000).take(20_000) + +# Train. +model.fit(train.batch(4096), epochs=5) + +# Evaluate. +model.evaluate(test.batch(4096), return_dict=True) +``` + + + + +%prep +%autosetup -n tensorflow-recommenders-0.7.3 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then +	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then +	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then +	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then +	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then +	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-tensorflow-recommenders -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.7.3-1 +- Package Spec generated @@ -0,0 +1 @@ +1b4f0e1c3fd3e40347fbbec2b694605f  tensorflow-recommenders-0.7.3.tar.gz | 
