diff options
author | CoprDistGit <infra@openeuler.org> | 2023-04-11 06:48:59 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-04-11 06:48:59 +0000 |
commit | 8b800871ab76720207357213e8d2b8bff30f0c70 (patch) | |
tree | 7bb8f68456b582a2a6c5347786550ca376c34063 | |
parent | 75908780ecb57bcace359acb812c4ad906083862 (diff) |
automatic import of python-tflite-model-maker-nightly
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-tflite-model-maker-nightly.spec | 391 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 393 insertions, 0 deletions
@@ -0,0 +1 @@ +/tflite-model-maker-nightly-0.4.3.dev202304110509.tar.gz diff --git a/python-tflite-model-maker-nightly.spec b/python-tflite-model-maker-nightly.spec new file mode 100644 index 0000000..242add4 --- /dev/null +++ b/python-tflite-model-maker-nightly.spec @@ -0,0 +1,391 @@ +%global _empty_manifest_terminate_build 0 +Name: python-tflite-model-maker-nightly +Version: 0.4.3.dev202304110509 +Release: 1 +Summary: TFLite Model Maker: a model customization library for on-device applications. +License: Apache 2.0 +URL: http://github.com/tensorflow/examples +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/fd/71/1bea458e05411b3e964598b51518df4f503e054c46e2f946d98735225f59/tflite-model-maker-nightly-0.4.3.dev202304110509.tar.gz +BuildArch: noarch + +Requires: python3-tf-models-official +Requires: python3-numpy +Requires: python3-pillow +Requires: python3-sentencepiece +Requires: python3-tensorflow-datasets +Requires: python3-fire +Requires: python3-flatbuffers +Requires: python3-absl-py +Requires: python3-urllib3 +Requires: python3-tflite-support-nightly +Requires: python3-tensorflow +Requires: python3-numba +Requires: python3-librosa +Requires: python3-lxml +Requires: python3-PyYAML +Requires: python3-matplotlib +Requires: python3-six +Requires: python3-tfa-nightly +Requires: python3-neural-structured-learning +Requires: python3-tensorflow-model-optimization +Requires: python3-Cython +Requires: python3-scann +Requires: python3-tensorflowjs +Requires: python3-tensorflow-hub +Requires: python3-tensorflow-hub + +%description +# TFLite Model Maker + +## Overview + +The TFLite Model Maker library simplifies the process of adapting and converting +a TensorFlow neural-network model to particular input data when deploying this +model for on-device ML applications. + +## Requirements + +* Refer to + [requirements.txt](https://github.com/tensorflow/examples/blob/master/tensorflow_examples/lite/model_maker/requirements.txt) + for dependent libraries that're needed to use the library and run the demo + code. +* Note that you might also need to install `sndfile` for Audio tasks. +On Debian/Ubuntu, you can do so by `sudo apt-get install libsndfile1` + +## Installation + +There are two ways to install Model Maker. + +* Install a prebuilt pip package: + [`tflite-model-maker`](https://pypi.org/project/tflite-model-maker/). + +```shell +pip install tflite-model-maker +``` + +If you want to install nightly version +[`tflite-model-maker-nightly`](https://pypi.org/project/tflite-model-maker-nightly/), +please follow the command: + +```shell +pip install tflite-model-maker-nightly +``` + +* Clone the source code from GitHub and install. + +```shell +git clone https://github.com/tensorflow/examples +cd examples/tensorflow_examples/lite/model_maker/pip_package +pip install -e . +``` + +TensorFlow Lite Model Maker depends on TensorFlow +[pip package](https://www.tensorflow.org/install/pip). For GPU support, please +refer to TensorFlow's [GPU guide](https://www.tensorflow.org/install/gpu) or +[installation guide](https://www.tensorflow.org/install). + +## End-to-End Example + +For instance, it could have an end-to-end image classification example that +utilizes this library with just 4 lines of code, each of which representing one +step of the overall process. For more detail, you could refer to +[Colab for image classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb). + +* Step 1. Import the required modules. + +```python +from tflite_model_maker import image_classifier +from tflite_model_maker.image_classifier import DataLoader +``` + +* Step 2. Load input data specific to an on-device ML app. + +```python +data = DataLoader.from_folder('flower_photos/') +``` + +* Step 3. Customize the TensorFlow model. + +```python +model = image_classifier.create(data) +``` + +* Step 4. Evaluate the model. + +```python +loss, accuracy = model.evaluate() +``` + +* Step 5. Export to Tensorflow Lite model and label file in `export_dir`. + +```python +model.export(export_dir='/tmp/') +``` + +## Notebook + +Currently, we support image classification, text classification and question +answer tasks. Meanwhile, we provide demo code for each of them in demo folder. + +* [Overview for TensorFlow Lite Model Maker](https://www.tensorflow.org/lite/guide/model_maker) +* [Python API Reference](https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker) +* [Colab for image classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb) +* [Colab for text classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_text_classification.ipynb) +* [Colab for BERT question answer](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_question_answer.ipynb) +* [Colab for object detection](https://www.tensorflow.org/lite/tutorials/model_maker_object_detection) + + +%package -n python3-tflite-model-maker-nightly +Summary: TFLite Model Maker: a model customization library for on-device applications. +Provides: python-tflite-model-maker-nightly +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-tflite-model-maker-nightly +# TFLite Model Maker + +## Overview + +The TFLite Model Maker library simplifies the process of adapting and converting +a TensorFlow neural-network model to particular input data when deploying this +model for on-device ML applications. + +## Requirements + +* Refer to + [requirements.txt](https://github.com/tensorflow/examples/blob/master/tensorflow_examples/lite/model_maker/requirements.txt) + for dependent libraries that're needed to use the library and run the demo + code. +* Note that you might also need to install `sndfile` for Audio tasks. +On Debian/Ubuntu, you can do so by `sudo apt-get install libsndfile1` + +## Installation + +There are two ways to install Model Maker. + +* Install a prebuilt pip package: + [`tflite-model-maker`](https://pypi.org/project/tflite-model-maker/). + +```shell +pip install tflite-model-maker +``` + +If you want to install nightly version +[`tflite-model-maker-nightly`](https://pypi.org/project/tflite-model-maker-nightly/), +please follow the command: + +```shell +pip install tflite-model-maker-nightly +``` + +* Clone the source code from GitHub and install. + +```shell +git clone https://github.com/tensorflow/examples +cd examples/tensorflow_examples/lite/model_maker/pip_package +pip install -e . +``` + +TensorFlow Lite Model Maker depends on TensorFlow +[pip package](https://www.tensorflow.org/install/pip). For GPU support, please +refer to TensorFlow's [GPU guide](https://www.tensorflow.org/install/gpu) or +[installation guide](https://www.tensorflow.org/install). + +## End-to-End Example + +For instance, it could have an end-to-end image classification example that +utilizes this library with just 4 lines of code, each of which representing one +step of the overall process. For more detail, you could refer to +[Colab for image classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb). + +* Step 1. Import the required modules. + +```python +from tflite_model_maker import image_classifier +from tflite_model_maker.image_classifier import DataLoader +``` + +* Step 2. Load input data specific to an on-device ML app. + +```python +data = DataLoader.from_folder('flower_photos/') +``` + +* Step 3. Customize the TensorFlow model. + +```python +model = image_classifier.create(data) +``` + +* Step 4. Evaluate the model. + +```python +loss, accuracy = model.evaluate() +``` + +* Step 5. Export to Tensorflow Lite model and label file in `export_dir`. + +```python +model.export(export_dir='/tmp/') +``` + +## Notebook + +Currently, we support image classification, text classification and question +answer tasks. Meanwhile, we provide demo code for each of them in demo folder. + +* [Overview for TensorFlow Lite Model Maker](https://www.tensorflow.org/lite/guide/model_maker) +* [Python API Reference](https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker) +* [Colab for image classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb) +* [Colab for text classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_text_classification.ipynb) +* [Colab for BERT question answer](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_question_answer.ipynb) +* [Colab for object detection](https://www.tensorflow.org/lite/tutorials/model_maker_object_detection) + + +%package help +Summary: Development documents and examples for tflite-model-maker-nightly +Provides: python3-tflite-model-maker-nightly-doc +%description help +# TFLite Model Maker + +## Overview + +The TFLite Model Maker library simplifies the process of adapting and converting +a TensorFlow neural-network model to particular input data when deploying this +model for on-device ML applications. + +## Requirements + +* Refer to + [requirements.txt](https://github.com/tensorflow/examples/blob/master/tensorflow_examples/lite/model_maker/requirements.txt) + for dependent libraries that're needed to use the library and run the demo + code. +* Note that you might also need to install `sndfile` for Audio tasks. +On Debian/Ubuntu, you can do so by `sudo apt-get install libsndfile1` + +## Installation + +There are two ways to install Model Maker. + +* Install a prebuilt pip package: + [`tflite-model-maker`](https://pypi.org/project/tflite-model-maker/). + +```shell +pip install tflite-model-maker +``` + +If you want to install nightly version +[`tflite-model-maker-nightly`](https://pypi.org/project/tflite-model-maker-nightly/), +please follow the command: + +```shell +pip install tflite-model-maker-nightly +``` + +* Clone the source code from GitHub and install. + +```shell +git clone https://github.com/tensorflow/examples +cd examples/tensorflow_examples/lite/model_maker/pip_package +pip install -e . +``` + +TensorFlow Lite Model Maker depends on TensorFlow +[pip package](https://www.tensorflow.org/install/pip). For GPU support, please +refer to TensorFlow's [GPU guide](https://www.tensorflow.org/install/gpu) or +[installation guide](https://www.tensorflow.org/install). + +## End-to-End Example + +For instance, it could have an end-to-end image classification example that +utilizes this library with just 4 lines of code, each of which representing one +step of the overall process. For more detail, you could refer to +[Colab for image classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb). + +* Step 1. Import the required modules. + +```python +from tflite_model_maker import image_classifier +from tflite_model_maker.image_classifier import DataLoader +``` + +* Step 2. Load input data specific to an on-device ML app. + +```python +data = DataLoader.from_folder('flower_photos/') +``` + +* Step 3. Customize the TensorFlow model. + +```python +model = image_classifier.create(data) +``` + +* Step 4. Evaluate the model. + +```python +loss, accuracy = model.evaluate() +``` + +* Step 5. Export to Tensorflow Lite model and label file in `export_dir`. + +```python +model.export(export_dir='/tmp/') +``` + +## Notebook + +Currently, we support image classification, text classification and question +answer tasks. Meanwhile, we provide demo code for each of them in demo folder. + +* [Overview for TensorFlow Lite Model Maker](https://www.tensorflow.org/lite/guide/model_maker) +* [Python API Reference](https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker) +* [Colab for image classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb) +* [Colab for text classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_text_classification.ipynb) +* [Colab for BERT question answer](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_question_answer.ipynb) +* [Colab for object detection](https://www.tensorflow.org/lite/tutorials/model_maker_object_detection) + + +%prep +%autosetup -n tflite-model-maker-nightly-0.4.3.dev202304110509 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-tflite-model-maker-nightly -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.3.dev202304110509-1 +- Package Spec generated @@ -0,0 +1 @@ +036a2e0ca6864d8903949fe4ecb82844 tflite-model-maker-nightly-0.4.3.dev202304110509.tar.gz |