summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-31 05:59:20 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-31 05:59:20 +0000
commitf3d4fc32654b0978a09f68dfc829e1ba0d7bb41b (patch)
tree4f0943c3d73db88b189dad8857816d27b5a3bf1d
parent8e9e372c487cb37c3a415d0a3c05d84987fc23c5 (diff)
automatic import of python-tsextract
-rw-r--r--.gitignore1
-rw-r--r--python-tsextract.spec552
-rw-r--r--sources1
3 files changed, 554 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..d243756 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/tsextract-0.0.9.tar.gz
diff --git a/python-tsextract.spec b/python-tsextract.spec
new file mode 100644
index 0000000..cc0f178
--- /dev/null
+++ b/python-tsextract.spec
@@ -0,0 +1,552 @@
+%global _empty_manifest_terminate_build 0
+Name: python-tsextract
+Version: 0.0.9
+Release: 1
+Summary: Time series data preprocessing
+License: GNU GPL
+URL: https://github.com/cydal/tsExtract/tree/master/tsextract
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/12/4d/8f5bf8123dd352f6559b623bf317c080771bf1371ef23ab76491b98d9082/tsextract-0.0.9.tar.gz
+BuildArch: noarch
+
+Requires: python3-pandas
+Requires: python3-plotnine
+Requires: python3-statsmodels
+Requires: python3-scipy
+Requires: python3-matplotlib
+Requires: python3-numpy
+
+%description
+![logo](https://i.postimg.cc/rsVLMjzn/tsextract-logo.jpg)
+
+
+## tsExtract: Time Series Preprocessing Library
+
+tsExtract is a time series preprocessing library. Using sliding windows, tsExtract allows for the conversion of time series data to a form that can be fed into standard machine learning regression algorithms like Linear Regression, Decision Trees Regression and as well as Deep Learning.
+
+![enter image description here](https://img.shields.io/badge/LICENSE-GNU_GPL-BLACK) ![enter image description here](https://img.shields.io/badge/pypi-v1.0.0-yellow) ![enter image description here](https://anaconda.org/cydal/tsextract/badges/version.svg) ![enter image description here](https://anaconda.org/cydal/tsextract/badges/latest_release_date.svg) ![enter image description here](https://anaconda.org/cydal/tsextract/badges/platforms.svg) ![enter image description here](https://anaconda.org/cydal/tsextract/badges/installer/conda.svg)
+[![Open Source Helpers](https://www.codetriage.com/cydal/tsextract/badges/users.svg)](https://www.codetriage.com/cydal/tsextract)
+
+
+
+# Installation
+
+<code> pip </code>
+
+> **pip install tsextract**
+
+<code> conda </code>
+> **conda install -c cydal tsextract**
+
+
+
+## Main Features
+
+* Take sliding window of data and with that, create additional columns representing the window.
+* Perform differencing on windowed data to remove non-stationarity.
+* Calculate statistics on windowed and differenced data. These include temporal and spectral statistics functions.
+* Plot visualisations. These include -
+* * Actual vs Predicted line and scatter plots
+* * Lag correlation
+
+## Usage
+
+### [Example Notebooks](https://github.com/cydal/tsExtract/tree/master/examples)
+
+```python
+print(df.head())
+```
+
+
+| |Date |DAYTON_MW |
+|----------------|-------------------------------|-----------------------------|
+| |`2004-12-31 01:00:00` |`1596.0` |
+| |`2004-12-31 02:00:00` | `1517.0` |
+| |`2004-12-31 03:00:00`|`1486.0`|
+| | `2004-12-31 04:00:00`|`1469.0` |
+| |`2004-12-31 05:00:00` | `1472.0` |
+
+
+
+Using the main **build_features** function
+
+
+**build_features** takes in 4 arguments -
+* **Data**: Time series data in 1d.
+
+* **Request Dictionary**: Dictionary with the function type and parameters
+* **Include_tzero** (optional) - This gives the option on whether to include the column t+0. Can be quite handy when implementing difference networks.
+* **target_lag** - Sets lag value. If predicting 10 hours into the future, then a value of 10 should be included. Default is 3.
+
+```python
+from tsextract.feature_extraction.extract import build_features
+
+features_request = {
+ "window":[10]
+}
+
+features = build_features(df["DAYTON_MW"], features_request, include_tzero=False)
+```
+
+The example above sends in a request for a sliding window size of 10. What is returned is a dataframe with 10 columns equal to the window size passed in. The final column is the target column with values shifted 3 time steps in the future.
+
+
+![enter image description here](https://i.postimg.cc/SRQTtbnH/Screenshot-2020-11-11-at-00-12-11.png)
+
+
+### Features
+
+* **window**: Takes sliding window of the data. Parameter(s) passed in as a list. A single value will take a sliding window corresponding to that value. A parameter of 10 will take windows from 1 to 10. If [5, 10] is passed in instead, then a window of 5 to 10 time steps will be taken instead.
+
+* **window_statistic**: This performs windowing like above, but then applies specified statistic operation to reduce matrix to a vector of 1d.
+
+* **difference/momentum/force**: Performs differencing by subtracting from the value in the present time step, the value in the previous time step. The parameter expected is a list of size 2 or 3. Just like in windowing, the first value refers to the window size. Two windowing values may also be passed in for windows in that range.
+The final value is the lag, this refers to the differencing lag for subtraction. A difference lag of 1 means values are subtracted from immediate past values (t3-t2, t2-t1, t1-t0 e.t.c) while a difference lag of 3 will subtract from 3 time steps before (t6-t3, t5-t2, t4-t1 e.t.c).
+Momentum & Force are 2nd & 3rd order differences.
+
+* **difference_statistic/momentum_statistic/force_statistic**: Similarly, this performs the operations described above, but then applies the specified statistic.
+
+```python
+from tsextract.feature_extraction.extract import build_features
+from tsextract.domain.statistics import median, mean, skew, kurtosis
+from tsextract.domain.temporal import abs_energy
+
+features_request = {
+ "window":[2],
+ "window_statistic":[24, median],
+ "difference":[12, 10],
+ "difference_statistic":[15, 10, abs_energy],
+}
+
+features = build_features(df["DAYTON_MW"], features_request, include_tzero=True, target_lag=3)
+```
+
+![enter image description here](https://i.postimg.cc/VvVhrsgm/Screenshot-2020-11-11-at-01-00-16.png)
+
+# Summary Statistics
+
+
+As described above, rather than take raw windowing or differencing matrix values, it is possible to take some summary statistic of it. See supported features.
+
+
+| Statistics | Temporal | Spectral |
+| :--- | :----: | ---: |
+| Mean | Absolute Energy | Spectral Centroid |
+| Median | AUC | |
+| Range | Mean Absolute Difference | |
+| Standard Deviation | Moment | |
+| Minimum | Autocorrelation | |
+| Maximum | Zero Crossing Rate | |
+| Range | | |
+| Variance | | |
+| Kurtosis | | |
+| Skew | | |
+| IQR | | |
+| MAE | | |
+| RMSE | | |
+
+
+
+
+## Dependencies
+
+* pandas >= 1.0.3
+* seaborn >= 0.10.1
+* statsmodels >= 0.11.1
+* scipy >= 1.5.0
+* matplotlib >= 3.2.1
+* numpy >= 1.16.4
+
+
+## License
+
+[GNU GPL V3](http://www.gnu.org/licenses/quick-guide-gplv3.html)
+
+
+# Contribute
+
+Contributors of all experience levels are welcome. Please see the contributing guide.
+
+
+### Source Code
+
+<code> You can get the latest source code </code>
+
+> git clone https://github.com/cydal/tsExtract.git
+
+
+
+
+%package -n python3-tsextract
+Summary: Time series data preprocessing
+Provides: python-tsextract
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-tsextract
+![logo](https://i.postimg.cc/rsVLMjzn/tsextract-logo.jpg)
+
+
+## tsExtract: Time Series Preprocessing Library
+
+tsExtract is a time series preprocessing library. Using sliding windows, tsExtract allows for the conversion of time series data to a form that can be fed into standard machine learning regression algorithms like Linear Regression, Decision Trees Regression and as well as Deep Learning.
+
+![enter image description here](https://img.shields.io/badge/LICENSE-GNU_GPL-BLACK) ![enter image description here](https://img.shields.io/badge/pypi-v1.0.0-yellow) ![enter image description here](https://anaconda.org/cydal/tsextract/badges/version.svg) ![enter image description here](https://anaconda.org/cydal/tsextract/badges/latest_release_date.svg) ![enter image description here](https://anaconda.org/cydal/tsextract/badges/platforms.svg) ![enter image description here](https://anaconda.org/cydal/tsextract/badges/installer/conda.svg)
+[![Open Source Helpers](https://www.codetriage.com/cydal/tsextract/badges/users.svg)](https://www.codetriage.com/cydal/tsextract)
+
+
+
+# Installation
+
+<code> pip </code>
+
+> **pip install tsextract**
+
+<code> conda </code>
+> **conda install -c cydal tsextract**
+
+
+
+## Main Features
+
+* Take sliding window of data and with that, create additional columns representing the window.
+* Perform differencing on windowed data to remove non-stationarity.
+* Calculate statistics on windowed and differenced data. These include temporal and spectral statistics functions.
+* Plot visualisations. These include -
+* * Actual vs Predicted line and scatter plots
+* * Lag correlation
+
+## Usage
+
+### [Example Notebooks](https://github.com/cydal/tsExtract/tree/master/examples)
+
+```python
+print(df.head())
+```
+
+
+| |Date |DAYTON_MW |
+|----------------|-------------------------------|-----------------------------|
+| |`2004-12-31 01:00:00` |`1596.0` |
+| |`2004-12-31 02:00:00` | `1517.0` |
+| |`2004-12-31 03:00:00`|`1486.0`|
+| | `2004-12-31 04:00:00`|`1469.0` |
+| |`2004-12-31 05:00:00` | `1472.0` |
+
+
+
+Using the main **build_features** function
+
+
+**build_features** takes in 4 arguments -
+* **Data**: Time series data in 1d.
+
+* **Request Dictionary**: Dictionary with the function type and parameters
+* **Include_tzero** (optional) - This gives the option on whether to include the column t+0. Can be quite handy when implementing difference networks.
+* **target_lag** - Sets lag value. If predicting 10 hours into the future, then a value of 10 should be included. Default is 3.
+
+```python
+from tsextract.feature_extraction.extract import build_features
+
+features_request = {
+ "window":[10]
+}
+
+features = build_features(df["DAYTON_MW"], features_request, include_tzero=False)
+```
+
+The example above sends in a request for a sliding window size of 10. What is returned is a dataframe with 10 columns equal to the window size passed in. The final column is the target column with values shifted 3 time steps in the future.
+
+
+![enter image description here](https://i.postimg.cc/SRQTtbnH/Screenshot-2020-11-11-at-00-12-11.png)
+
+
+### Features
+
+* **window**: Takes sliding window of the data. Parameter(s) passed in as a list. A single value will take a sliding window corresponding to that value. A parameter of 10 will take windows from 1 to 10. If [5, 10] is passed in instead, then a window of 5 to 10 time steps will be taken instead.
+
+* **window_statistic**: This performs windowing like above, but then applies specified statistic operation to reduce matrix to a vector of 1d.
+
+* **difference/momentum/force**: Performs differencing by subtracting from the value in the present time step, the value in the previous time step. The parameter expected is a list of size 2 or 3. Just like in windowing, the first value refers to the window size. Two windowing values may also be passed in for windows in that range.
+The final value is the lag, this refers to the differencing lag for subtraction. A difference lag of 1 means values are subtracted from immediate past values (t3-t2, t2-t1, t1-t0 e.t.c) while a difference lag of 3 will subtract from 3 time steps before (t6-t3, t5-t2, t4-t1 e.t.c).
+Momentum & Force are 2nd & 3rd order differences.
+
+* **difference_statistic/momentum_statistic/force_statistic**: Similarly, this performs the operations described above, but then applies the specified statistic.
+
+```python
+from tsextract.feature_extraction.extract import build_features
+from tsextract.domain.statistics import median, mean, skew, kurtosis
+from tsextract.domain.temporal import abs_energy
+
+features_request = {
+ "window":[2],
+ "window_statistic":[24, median],
+ "difference":[12, 10],
+ "difference_statistic":[15, 10, abs_energy],
+}
+
+features = build_features(df["DAYTON_MW"], features_request, include_tzero=True, target_lag=3)
+```
+
+![enter image description here](https://i.postimg.cc/VvVhrsgm/Screenshot-2020-11-11-at-01-00-16.png)
+
+# Summary Statistics
+
+
+As described above, rather than take raw windowing or differencing matrix values, it is possible to take some summary statistic of it. See supported features.
+
+
+| Statistics | Temporal | Spectral |
+| :--- | :----: | ---: |
+| Mean | Absolute Energy | Spectral Centroid |
+| Median | AUC | |
+| Range | Mean Absolute Difference | |
+| Standard Deviation | Moment | |
+| Minimum | Autocorrelation | |
+| Maximum | Zero Crossing Rate | |
+| Range | | |
+| Variance | | |
+| Kurtosis | | |
+| Skew | | |
+| IQR | | |
+| MAE | | |
+| RMSE | | |
+
+
+
+
+## Dependencies
+
+* pandas >= 1.0.3
+* seaborn >= 0.10.1
+* statsmodels >= 0.11.1
+* scipy >= 1.5.0
+* matplotlib >= 3.2.1
+* numpy >= 1.16.4
+
+
+## License
+
+[GNU GPL V3](http://www.gnu.org/licenses/quick-guide-gplv3.html)
+
+
+# Contribute
+
+Contributors of all experience levels are welcome. Please see the contributing guide.
+
+
+### Source Code
+
+<code> You can get the latest source code </code>
+
+> git clone https://github.com/cydal/tsExtract.git
+
+
+
+
+%package help
+Summary: Development documents and examples for tsextract
+Provides: python3-tsextract-doc
+%description help
+![logo](https://i.postimg.cc/rsVLMjzn/tsextract-logo.jpg)
+
+
+## tsExtract: Time Series Preprocessing Library
+
+tsExtract is a time series preprocessing library. Using sliding windows, tsExtract allows for the conversion of time series data to a form that can be fed into standard machine learning regression algorithms like Linear Regression, Decision Trees Regression and as well as Deep Learning.
+
+![enter image description here](https://img.shields.io/badge/LICENSE-GNU_GPL-BLACK) ![enter image description here](https://img.shields.io/badge/pypi-v1.0.0-yellow) ![enter image description here](https://anaconda.org/cydal/tsextract/badges/version.svg) ![enter image description here](https://anaconda.org/cydal/tsextract/badges/latest_release_date.svg) ![enter image description here](https://anaconda.org/cydal/tsextract/badges/platforms.svg) ![enter image description here](https://anaconda.org/cydal/tsextract/badges/installer/conda.svg)
+[![Open Source Helpers](https://www.codetriage.com/cydal/tsextract/badges/users.svg)](https://www.codetriage.com/cydal/tsextract)
+
+
+
+# Installation
+
+<code> pip </code>
+
+> **pip install tsextract**
+
+<code> conda </code>
+> **conda install -c cydal tsextract**
+
+
+
+## Main Features
+
+* Take sliding window of data and with that, create additional columns representing the window.
+* Perform differencing on windowed data to remove non-stationarity.
+* Calculate statistics on windowed and differenced data. These include temporal and spectral statistics functions.
+* Plot visualisations. These include -
+* * Actual vs Predicted line and scatter plots
+* * Lag correlation
+
+## Usage
+
+### [Example Notebooks](https://github.com/cydal/tsExtract/tree/master/examples)
+
+```python
+print(df.head())
+```
+
+
+| |Date |DAYTON_MW |
+|----------------|-------------------------------|-----------------------------|
+| |`2004-12-31 01:00:00` |`1596.0` |
+| |`2004-12-31 02:00:00` | `1517.0` |
+| |`2004-12-31 03:00:00`|`1486.0`|
+| | `2004-12-31 04:00:00`|`1469.0` |
+| |`2004-12-31 05:00:00` | `1472.0` |
+
+
+
+Using the main **build_features** function
+
+
+**build_features** takes in 4 arguments -
+* **Data**: Time series data in 1d.
+
+* **Request Dictionary**: Dictionary with the function type and parameters
+* **Include_tzero** (optional) - This gives the option on whether to include the column t+0. Can be quite handy when implementing difference networks.
+* **target_lag** - Sets lag value. If predicting 10 hours into the future, then a value of 10 should be included. Default is 3.
+
+```python
+from tsextract.feature_extraction.extract import build_features
+
+features_request = {
+ "window":[10]
+}
+
+features = build_features(df["DAYTON_MW"], features_request, include_tzero=False)
+```
+
+The example above sends in a request for a sliding window size of 10. What is returned is a dataframe with 10 columns equal to the window size passed in. The final column is the target column with values shifted 3 time steps in the future.
+
+
+![enter image description here](https://i.postimg.cc/SRQTtbnH/Screenshot-2020-11-11-at-00-12-11.png)
+
+
+### Features
+
+* **window**: Takes sliding window of the data. Parameter(s) passed in as a list. A single value will take a sliding window corresponding to that value. A parameter of 10 will take windows from 1 to 10. If [5, 10] is passed in instead, then a window of 5 to 10 time steps will be taken instead.
+
+* **window_statistic**: This performs windowing like above, but then applies specified statistic operation to reduce matrix to a vector of 1d.
+
+* **difference/momentum/force**: Performs differencing by subtracting from the value in the present time step, the value in the previous time step. The parameter expected is a list of size 2 or 3. Just like in windowing, the first value refers to the window size. Two windowing values may also be passed in for windows in that range.
+The final value is the lag, this refers to the differencing lag for subtraction. A difference lag of 1 means values are subtracted from immediate past values (t3-t2, t2-t1, t1-t0 e.t.c) while a difference lag of 3 will subtract from 3 time steps before (t6-t3, t5-t2, t4-t1 e.t.c).
+Momentum & Force are 2nd & 3rd order differences.
+
+* **difference_statistic/momentum_statistic/force_statistic**: Similarly, this performs the operations described above, but then applies the specified statistic.
+
+```python
+from tsextract.feature_extraction.extract import build_features
+from tsextract.domain.statistics import median, mean, skew, kurtosis
+from tsextract.domain.temporal import abs_energy
+
+features_request = {
+ "window":[2],
+ "window_statistic":[24, median],
+ "difference":[12, 10],
+ "difference_statistic":[15, 10, abs_energy],
+}
+
+features = build_features(df["DAYTON_MW"], features_request, include_tzero=True, target_lag=3)
+```
+
+![enter image description here](https://i.postimg.cc/VvVhrsgm/Screenshot-2020-11-11-at-01-00-16.png)
+
+# Summary Statistics
+
+
+As described above, rather than take raw windowing or differencing matrix values, it is possible to take some summary statistic of it. See supported features.
+
+
+| Statistics | Temporal | Spectral |
+| :--- | :----: | ---: |
+| Mean | Absolute Energy | Spectral Centroid |
+| Median | AUC | |
+| Range | Mean Absolute Difference | |
+| Standard Deviation | Moment | |
+| Minimum | Autocorrelation | |
+| Maximum | Zero Crossing Rate | |
+| Range | | |
+| Variance | | |
+| Kurtosis | | |
+| Skew | | |
+| IQR | | |
+| MAE | | |
+| RMSE | | |
+
+
+
+
+## Dependencies
+
+* pandas >= 1.0.3
+* seaborn >= 0.10.1
+* statsmodels >= 0.11.1
+* scipy >= 1.5.0
+* matplotlib >= 3.2.1
+* numpy >= 1.16.4
+
+
+## License
+
+[GNU GPL V3](http://www.gnu.org/licenses/quick-guide-gplv3.html)
+
+
+# Contribute
+
+Contributors of all experience levels are welcome. Please see the contributing guide.
+
+
+### Source Code
+
+<code> You can get the latest source code </code>
+
+> git clone https://github.com/cydal/tsExtract.git
+
+
+
+
+%prep
+%autosetup -n tsextract-0.0.9
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-tsextract -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.9-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..6d2bfb0
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+c8306cde6540422beaf781dea076fda7 tsextract-0.0.9.tar.gz