diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-05 15:09:13 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-05 15:09:13 +0000 |
| commit | 1d37cf2d2b5d907a842e898cf43d73bb18e89d5b (patch) | |
| tree | 84a730f19948a897ba19d61b7d00d91ae3b82b1a | |
| parent | e57dfc38a9d86b16f40cd22873f178f966643162 (diff) | |
automatic import of python-wordnetopeneuler20.03
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-wordnet.spec | 471 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 473 insertions, 0 deletions
@@ -0,0 +1 @@ +/wordnet-0.0.1b2.tar.gz diff --git a/python-wordnet.spec b/python-wordnet.spec new file mode 100644 index 0000000..a7c541b --- /dev/null +++ b/python-wordnet.spec @@ -0,0 +1,471 @@ +%global _empty_manifest_terminate_build 0 +Name: python-wordnet +Version: 0.0.1b2 +Release: 1 +Summary: An module to create network of words on bases of realtive sense under a corpus of document. +License: GNU General Public License v3 +URL: https://anuragkumarak95.github.io/wordnet/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e5/c9/93f89fc3613db301ff92be67aa67a5f9e4b5e212081ce3569e84a9e57304/wordnet-0.0.1b2.tar.gz +BuildArch: noarch + + +%description +# WordNet + +[](https://travis-ci.org/anuragkumarak95/wordnet) +[](https://codecov.io/gh/anuragkumarak95/wordnet) +[](https://requires.io/github/anuragkumarak95/wordnet/requirements/?branch=master) + +Create a Simple **network of words** related to each other using **Twitter Streaming API**. + + + +Major parts of this project. + +* `Streamer` : ~/twitter_streaming.py +* `TF-IDF` Gene : ~/wordnet/tf_idf_generator.py +* `NN` words Gene :~/ wordnet/nn_words.py +* `NETWORK` Gene : ~/wordnet/word_net.py + +## Using Streamer Functionality + +1. `Clone this repo` and run on bash '`$pip install -r requirements.txt`' @ root directory and you will be ready to go.. + +1. Go to root-dir(~), Create a config.py file with details mentioned below: + ```python + # Variables that contains the user credentials to access Twitter Streaming API + # this link will help you(http://socialmedia-class.org/twittertutorial.html) + access_token = "xxx-xx-xxxx" + access_token_secret = "xxxxx" + consumer_key = "xxxxxx" + consumer_secret = "xxxxxxxx" + ``` +1. run `Streamer` with an array of filter words that you want to fetch tweets on. eg. `$python twitter_streaming.py hello hi hallo namaste > data_file.txt` this will save a line by line words from tweets filtered according to words used as args in `data_file.txt`. + +## Using WordNet Module + +1. `Clone this repo` and install wordnet module using this script, + + $python setup.py install + +1. To create a `TF-IDF` structure file for every doc, use: + + ```python + from wordnet import find_tf_idf + + df, tf_idf = find_tf_idf( + file_names=['file/path1','file/path2',..], # paths of files to be processed.(create using twitter_streamer.py) + prev_file_path='prev/tf/idf/file/path.tfidfpkl', # prev TF_IDF file to modify over, format standard is .tfidfpkl. default = None + dump_path='path/to/dump/file.tfidfpkl' # dump_path if tf-idf needs to be dumped, format standard is .tfidfpkl. default = None + ) + + ''' + if no file is provided prev_file_path parameter, new TF-IDF file will be generated ,and else + TF-IDF values will be combined with previous file, and dumped at dump_path if mentioned, + else will only return the new tf-idf list of dictionaries, and df dictionary. + ''' + ``` +1. To use `NN` Word Gene of this module, simply use wordnet.find_knn: + + ```python + from wordnet import find_knn + + words = find_knn( + tf_idf=tf_idf, # this tf_idf is returned by find_tf_idf() above. + input_word='german', # a word for which k nearest neighbours are required. + k=10, # k = number of neighbours required, default=10 + rand_on=True # rand_on = either to randomly skip few words or show initial k words default=True + ) + + ''' + This function will return a list of words closely related to provided input_word refering to + tf_idf var provided to it. either use find_tf_idf() to gather this var or pickle.load() a dump + file dumped by the same function at your choosen directory. the file contains 2 lists in format + (idf, tf_idf). + ''' + ``` + +1. To create a Word `Network`, use : + + ```python + from wordnet import generate_net + + word_net = generate_net( + df=df, # this df is returned by find_tf_idf() above. + tf_idf=tf_idf, # this tf_idf is returned by find_tf_idf() above. + dump_path='path/to/dump.wrnt' # dump_path = path to dump the generated files, format standard is .wrnt. default=None + ) + + ''' + this function returns a dict of Word entities, with word as key. + ''' + ``` + +1. To retrieve a Word `Network`, use : + + ```python + from wordnet import retrieve_net + + word_net = retrieve_net( + 'path/to/network.wrnt' # path to network file, format standard is .wrnt. + ) + ''' + this function returns a dictionary of Word entities, with word as key. + ''' + ``` + +1. To retrieve list of words that are at some depth form a root word in the network, use: + + ```python + from wordnet import return_net + + words = return_net( + word, # root word in this process. + word_net, # word network generated from generate_net() + depth=1 # depth to which you wish this word collector to traverse. + ) + ''' + This function returns a list of words that are at provided depth from root word in the + network provided. + ''' + ``` + +### Test Run + +To run a formal test, simply run this script. `python test.py`, this module will return **0** if everythinig worked as expected. + +test.py uses sample data provided [here](https://github.com/anuragkumarak95/wordnet/tree/master/test) and executes unittest on `find_tf_idf()`, `find_knn()` & `generate_net()`. + +> `Streamer` functionality will not be provided under distribution of this code. That is just a script independent from the module. + +#### Contributions Are welcomed here + + + +by [@Anurag](https://github.com/anuragkumarak95) + + +%package -n python3-wordnet +Summary: An module to create network of words on bases of realtive sense under a corpus of document. +Provides: python-wordnet +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-wordnet +# WordNet + +[](https://travis-ci.org/anuragkumarak95/wordnet) +[](https://codecov.io/gh/anuragkumarak95/wordnet) +[](https://requires.io/github/anuragkumarak95/wordnet/requirements/?branch=master) + +Create a Simple **network of words** related to each other using **Twitter Streaming API**. + + + +Major parts of this project. + +* `Streamer` : ~/twitter_streaming.py +* `TF-IDF` Gene : ~/wordnet/tf_idf_generator.py +* `NN` words Gene :~/ wordnet/nn_words.py +* `NETWORK` Gene : ~/wordnet/word_net.py + +## Using Streamer Functionality + +1. `Clone this repo` and run on bash '`$pip install -r requirements.txt`' @ root directory and you will be ready to go.. + +1. Go to root-dir(~), Create a config.py file with details mentioned below: + ```python + # Variables that contains the user credentials to access Twitter Streaming API + # this link will help you(http://socialmedia-class.org/twittertutorial.html) + access_token = "xxx-xx-xxxx" + access_token_secret = "xxxxx" + consumer_key = "xxxxxx" + consumer_secret = "xxxxxxxx" + ``` +1. run `Streamer` with an array of filter words that you want to fetch tweets on. eg. `$python twitter_streaming.py hello hi hallo namaste > data_file.txt` this will save a line by line words from tweets filtered according to words used as args in `data_file.txt`. + +## Using WordNet Module + +1. `Clone this repo` and install wordnet module using this script, + + $python setup.py install + +1. To create a `TF-IDF` structure file for every doc, use: + + ```python + from wordnet import find_tf_idf + + df, tf_idf = find_tf_idf( + file_names=['file/path1','file/path2',..], # paths of files to be processed.(create using twitter_streamer.py) + prev_file_path='prev/tf/idf/file/path.tfidfpkl', # prev TF_IDF file to modify over, format standard is .tfidfpkl. default = None + dump_path='path/to/dump/file.tfidfpkl' # dump_path if tf-idf needs to be dumped, format standard is .tfidfpkl. default = None + ) + + ''' + if no file is provided prev_file_path parameter, new TF-IDF file will be generated ,and else + TF-IDF values will be combined with previous file, and dumped at dump_path if mentioned, + else will only return the new tf-idf list of dictionaries, and df dictionary. + ''' + ``` +1. To use `NN` Word Gene of this module, simply use wordnet.find_knn: + + ```python + from wordnet import find_knn + + words = find_knn( + tf_idf=tf_idf, # this tf_idf is returned by find_tf_idf() above. + input_word='german', # a word for which k nearest neighbours are required. + k=10, # k = number of neighbours required, default=10 + rand_on=True # rand_on = either to randomly skip few words or show initial k words default=True + ) + + ''' + This function will return a list of words closely related to provided input_word refering to + tf_idf var provided to it. either use find_tf_idf() to gather this var or pickle.load() a dump + file dumped by the same function at your choosen directory. the file contains 2 lists in format + (idf, tf_idf). + ''' + ``` + +1. To create a Word `Network`, use : + + ```python + from wordnet import generate_net + + word_net = generate_net( + df=df, # this df is returned by find_tf_idf() above. + tf_idf=tf_idf, # this tf_idf is returned by find_tf_idf() above. + dump_path='path/to/dump.wrnt' # dump_path = path to dump the generated files, format standard is .wrnt. default=None + ) + + ''' + this function returns a dict of Word entities, with word as key. + ''' + ``` + +1. To retrieve a Word `Network`, use : + + ```python + from wordnet import retrieve_net + + word_net = retrieve_net( + 'path/to/network.wrnt' # path to network file, format standard is .wrnt. + ) + ''' + this function returns a dictionary of Word entities, with word as key. + ''' + ``` + +1. To retrieve list of words that are at some depth form a root word in the network, use: + + ```python + from wordnet import return_net + + words = return_net( + word, # root word in this process. + word_net, # word network generated from generate_net() + depth=1 # depth to which you wish this word collector to traverse. + ) + ''' + This function returns a list of words that are at provided depth from root word in the + network provided. + ''' + ``` + +### Test Run + +To run a formal test, simply run this script. `python test.py`, this module will return **0** if everythinig worked as expected. + +test.py uses sample data provided [here](https://github.com/anuragkumarak95/wordnet/tree/master/test) and executes unittest on `find_tf_idf()`, `find_knn()` & `generate_net()`. + +> `Streamer` functionality will not be provided under distribution of this code. That is just a script independent from the module. + +#### Contributions Are welcomed here + + + +by [@Anurag](https://github.com/anuragkumarak95) + + +%package help +Summary: Development documents and examples for wordnet +Provides: python3-wordnet-doc +%description help +# WordNet + +[](https://travis-ci.org/anuragkumarak95/wordnet) +[](https://codecov.io/gh/anuragkumarak95/wordnet) +[](https://requires.io/github/anuragkumarak95/wordnet/requirements/?branch=master) + +Create a Simple **network of words** related to each other using **Twitter Streaming API**. + + + +Major parts of this project. + +* `Streamer` : ~/twitter_streaming.py +* `TF-IDF` Gene : ~/wordnet/tf_idf_generator.py +* `NN` words Gene :~/ wordnet/nn_words.py +* `NETWORK` Gene : ~/wordnet/word_net.py + +## Using Streamer Functionality + +1. `Clone this repo` and run on bash '`$pip install -r requirements.txt`' @ root directory and you will be ready to go.. + +1. Go to root-dir(~), Create a config.py file with details mentioned below: + ```python + # Variables that contains the user credentials to access Twitter Streaming API + # this link will help you(http://socialmedia-class.org/twittertutorial.html) + access_token = "xxx-xx-xxxx" + access_token_secret = "xxxxx" + consumer_key = "xxxxxx" + consumer_secret = "xxxxxxxx" + ``` +1. run `Streamer` with an array of filter words that you want to fetch tweets on. eg. `$python twitter_streaming.py hello hi hallo namaste > data_file.txt` this will save a line by line words from tweets filtered according to words used as args in `data_file.txt`. + +## Using WordNet Module + +1. `Clone this repo` and install wordnet module using this script, + + $python setup.py install + +1. To create a `TF-IDF` structure file for every doc, use: + + ```python + from wordnet import find_tf_idf + + df, tf_idf = find_tf_idf( + file_names=['file/path1','file/path2',..], # paths of files to be processed.(create using twitter_streamer.py) + prev_file_path='prev/tf/idf/file/path.tfidfpkl', # prev TF_IDF file to modify over, format standard is .tfidfpkl. default = None + dump_path='path/to/dump/file.tfidfpkl' # dump_path if tf-idf needs to be dumped, format standard is .tfidfpkl. default = None + ) + + ''' + if no file is provided prev_file_path parameter, new TF-IDF file will be generated ,and else + TF-IDF values will be combined with previous file, and dumped at dump_path if mentioned, + else will only return the new tf-idf list of dictionaries, and df dictionary. + ''' + ``` +1. To use `NN` Word Gene of this module, simply use wordnet.find_knn: + + ```python + from wordnet import find_knn + + words = find_knn( + tf_idf=tf_idf, # this tf_idf is returned by find_tf_idf() above. + input_word='german', # a word for which k nearest neighbours are required. + k=10, # k = number of neighbours required, default=10 + rand_on=True # rand_on = either to randomly skip few words or show initial k words default=True + ) + + ''' + This function will return a list of words closely related to provided input_word refering to + tf_idf var provided to it. either use find_tf_idf() to gather this var or pickle.load() a dump + file dumped by the same function at your choosen directory. the file contains 2 lists in format + (idf, tf_idf). + ''' + ``` + +1. To create a Word `Network`, use : + + ```python + from wordnet import generate_net + + word_net = generate_net( + df=df, # this df is returned by find_tf_idf() above. + tf_idf=tf_idf, # this tf_idf is returned by find_tf_idf() above. + dump_path='path/to/dump.wrnt' # dump_path = path to dump the generated files, format standard is .wrnt. default=None + ) + + ''' + this function returns a dict of Word entities, with word as key. + ''' + ``` + +1. To retrieve a Word `Network`, use : + + ```python + from wordnet import retrieve_net + + word_net = retrieve_net( + 'path/to/network.wrnt' # path to network file, format standard is .wrnt. + ) + ''' + this function returns a dictionary of Word entities, with word as key. + ''' + ``` + +1. To retrieve list of words that are at some depth form a root word in the network, use: + + ```python + from wordnet import return_net + + words = return_net( + word, # root word in this process. + word_net, # word network generated from generate_net() + depth=1 # depth to which you wish this word collector to traverse. + ) + ''' + This function returns a list of words that are at provided depth from root word in the + network provided. + ''' + ``` + +### Test Run + +To run a formal test, simply run this script. `python test.py`, this module will return **0** if everythinig worked as expected. + +test.py uses sample data provided [here](https://github.com/anuragkumarak95/wordnet/tree/master/test) and executes unittest on `find_tf_idf()`, `find_knn()` & `generate_net()`. + +> `Streamer` functionality will not be provided under distribution of this code. That is just a script independent from the module. + +#### Contributions Are welcomed here + + + +by [@Anurag](https://github.com/anuragkumarak95) + + +%prep +%autosetup -n wordnet-0.0.1b2 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-wordnet -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.1b2-1 +- Package Spec generated @@ -0,0 +1 @@ +29d275f6fdd5b2e7b3a101cd8e474eb9 wordnet-0.0.1b2.tar.gz |
