summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-03-09 18:15:17 +0000
committerCoprDistGit <infra@openeuler.org>2023-03-09 18:15:17 +0000
commit705116ffc656e52867dbe11aa91ac0f7e89d1801 (patch)
tree4cbcc7cad544eb3c2dbaabac8548b3b39bd1afd6
parente69b0b7858daaf4a5cb7d8f1721f61c82eaa3c5b (diff)
automatic import of python-xarray
-rw-r--r--.gitignore1
-rw-r--r--python-xarray.spec182
-rw-r--r--sources1
3 files changed, 184 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..891ef2c 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/xarray-2023.2.0.tar.gz
diff --git a/python-xarray.spec b/python-xarray.spec
new file mode 100644
index 0000000..e9c62d8
--- /dev/null
+++ b/python-xarray.spec
@@ -0,0 +1,182 @@
+%global _empty_manifest_terminate_build 0
+Name: python-xarray
+Version: 2023.2.0
+Release: 1
+Summary: N-D labeled arrays and datasets in Python
+License: Apache-2.0
+URL: https://github.com/pydata/xarray
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/01/be/ef024d1f3ecac9e8924165e4c5a4e948a08b051036021863548653b97eb5/xarray-2023.2.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-pandas
+Requires: python3-packaging
+Requires: python3-scipy
+Requires: python3-bottleneck
+Requires: python3-numbagg
+Requires: python3-flox
+Requires: python3-netCDF4
+Requires: python3-h5netcdf
+Requires: python3-scipy
+Requires: python3-zarr
+Requires: python3-fsspec
+Requires: python3-cftime
+Requires: python3-rasterio
+Requires: python3-cfgrib
+Requires: python3-pooch
+Requires: python3-bottleneck
+Requires: python3-numbagg
+Requires: python3-flox
+Requires: python3-dask[complete]
+Requires: python3-matplotlib
+Requires: python3-seaborn
+Requires: python3-nc-time-axis
+Requires: python3-pydap
+Requires: python3-netCDF4
+Requires: python3-h5netcdf
+Requires: python3-scipy
+Requires: python3-zarr
+Requires: python3-fsspec
+Requires: python3-cftime
+Requires: python3-rasterio
+Requires: python3-cfgrib
+Requires: python3-pooch
+Requires: python3-bottleneck
+Requires: python3-numbagg
+Requires: python3-flox
+Requires: python3-dask[complete]
+Requires: python3-matplotlib
+Requires: python3-seaborn
+Requires: python3-nc-time-axis
+Requires: python3-sphinx-autosummary-accessors
+Requires: python3-sphinx-rtd-theme
+Requires: python3-ipython
+Requires: python3-ipykernel
+Requires: python3-jupyter-client
+Requires: python3-nbsphinx
+Requires: python3-scanpydoc
+Requires: python3-pydap
+Requires: python3-netCDF4
+Requires: python3-h5netcdf
+Requires: python3-scipy
+Requires: python3-zarr
+Requires: python3-fsspec
+Requires: python3-cftime
+Requires: python3-rasterio
+Requires: python3-cfgrib
+Requires: python3-pooch
+Requires: python3-pydap
+Requires: python3-dask[complete]
+Requires: python3-matplotlib
+Requires: python3-seaborn
+Requires: python3-nc-time-axis
+
+%description
+Multi-dimensional (a.k.a. N-dimensional, ND) arrays (sometimes called
+"tensors") are an essential part of computational science.
+They are encountered in a wide range of fields, including physics, astronomy,
+geoscience, bioinformatics, engineering, finance, and deep learning.
+In Python, NumPy_ provides the fundamental data structure and API for
+working with raw ND arrays.
+However, real-world datasets are usually more than just raw numbers;
+they have labels which encode information about how the array values map
+to locations in space, time, etc.
+xarray doesn't just keep track of labels on arrays -- it uses them to provide a
+powerful and concise interface. For example:
+- Apply operations over dimensions by name: ``x.sum('time')``.
+- Select values by label instead of integer location: ``x.loc['2014-01-01']`` or ``x.sel(time='2014-01-01')``.
+- Mathematical operations (e.g., ``x - y``) vectorize across multiple dimensions (array broadcasting) based on dimension names, not shape.
+- Flexible split-apply-combine operations with groupby: ``x.groupby('time.dayofyear').mean()``.
+- Database like alignment based on coordinate labels that smoothly handles missing values: ``x, y = xr.align(x, y, join='outer')``.
+- Keep track of arbitrary metadata in the form of a Python dictionary: ``x.attrs``.
+
+%package -n python3-xarray
+Summary: N-D labeled arrays and datasets in Python
+Provides: python-xarray
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-xarray
+Multi-dimensional (a.k.a. N-dimensional, ND) arrays (sometimes called
+"tensors") are an essential part of computational science.
+They are encountered in a wide range of fields, including physics, astronomy,
+geoscience, bioinformatics, engineering, finance, and deep learning.
+In Python, NumPy_ provides the fundamental data structure and API for
+working with raw ND arrays.
+However, real-world datasets are usually more than just raw numbers;
+they have labels which encode information about how the array values map
+to locations in space, time, etc.
+xarray doesn't just keep track of labels on arrays -- it uses them to provide a
+powerful and concise interface. For example:
+- Apply operations over dimensions by name: ``x.sum('time')``.
+- Select values by label instead of integer location: ``x.loc['2014-01-01']`` or ``x.sel(time='2014-01-01')``.
+- Mathematical operations (e.g., ``x - y``) vectorize across multiple dimensions (array broadcasting) based on dimension names, not shape.
+- Flexible split-apply-combine operations with groupby: ``x.groupby('time.dayofyear').mean()``.
+- Database like alignment based on coordinate labels that smoothly handles missing values: ``x, y = xr.align(x, y, join='outer')``.
+- Keep track of arbitrary metadata in the form of a Python dictionary: ``x.attrs``.
+
+%package help
+Summary: Development documents and examples for xarray
+Provides: python3-xarray-doc
+%description help
+Multi-dimensional (a.k.a. N-dimensional, ND) arrays (sometimes called
+"tensors") are an essential part of computational science.
+They are encountered in a wide range of fields, including physics, astronomy,
+geoscience, bioinformatics, engineering, finance, and deep learning.
+In Python, NumPy_ provides the fundamental data structure and API for
+working with raw ND arrays.
+However, real-world datasets are usually more than just raw numbers;
+they have labels which encode information about how the array values map
+to locations in space, time, etc.
+xarray doesn't just keep track of labels on arrays -- it uses them to provide a
+powerful and concise interface. For example:
+- Apply operations over dimensions by name: ``x.sum('time')``.
+- Select values by label instead of integer location: ``x.loc['2014-01-01']`` or ``x.sel(time='2014-01-01')``.
+- Mathematical operations (e.g., ``x - y``) vectorize across multiple dimensions (array broadcasting) based on dimension names, not shape.
+- Flexible split-apply-combine operations with groupby: ``x.groupby('time.dayofyear').mean()``.
+- Database like alignment based on coordinate labels that smoothly handles missing values: ``x, y = xr.align(x, y, join='outer')``.
+- Keep track of arbitrary metadata in the form of a Python dictionary: ``x.attrs``.
+
+%prep
+%autosetup -n xarray-2023.2.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-xarray -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Thu Mar 09 2023 Python_Bot <Python_Bot@openeuler.org> - 2023.2.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..c6d5f6b
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+4f09559aecb2d61791bcc9c13db1d477 xarray-2023.2.0.tar.gz