blob: 6cf0ac2116d5d2db87066ab5c1a8a2555db6f152 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
%global _empty_manifest_terminate_build 0
%define debug_package %{nil}
Name: vision
Version: 0.16.0
Release: 2
Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration
License: BSD-3
URL: https://github.com/pytorch/vision
Source0: https://atomgit.com/havefun/vision/raw/master/torchvision-0.16.0.tar.gz
BuildRequires: g++
Requires: python3-future
Requires: python3-numpy
%description
PyTorch is a Python package that provides two high-level features:
- Tensor computation (like NumPy) with strong GPU acceleration
- Deep neural networks built on a tape-based autograd system
You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed.
%package -n python3-vision
Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration
Provides: python-vision
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-setuptools_scm
BuildRequires: python3-pbr
BuildRequires: python3-pip
BuildRequires: python3-wheel
BuildRequires: python3-hatchling
BuildRequires: python3-astunparse
BuildRequires: python3-numpy
BuildRequires: python3-pyyaml
BuildRequires: cmake
BuildRequires: python3-typing-extensions
BuildRequires: python3-requests
BuildRequires: python3-pytorch
AutoReqProv: no
%description -n python3-vision
PyTorch is a Python package that provides two high-level features:
- Tensor computation (like NumPy) with strong GPU acceleration
- Deep neural networks built on a tape-based autograd system
You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed.
%package help
Summary: Development documents and examples for torch
Provides: python3-vision-doc
%description help
PyTorch is a Python package that provides two high-level features:
- Tensor computation (like NumPy) with strong GPU acceleration
- Deep neural networks built on a tape-based autograd system
You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend PyTorch when needed.
%prep
%autosetup -p1 -n %{name}-%{version}
%build
%py3_build
#python3 setup.py build
%install
%define _unpackaged_files_terminate_build 0
%py3_install
#python3 setup.py install
%files -n python3-vision
%doc *.md
%license LICENSE
%{python3_sitearch}/*
%changelog
* Wed Jan 31 2024 Hongyu Li<543306408@qq.com>
- Package init
|