1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
%global _empty_manifest_terminate_build 0
Name: python-BFG-Y2H
Version: 0.1.2
Release: 1
Summary: Analysis scripts for BFG-Y2H data
License: MIT License
URL: https://github.com/RyogaLi/BFG_Y2H
Source0: https://mirrors.aliyun.com/pypi/web/packages/5c/7c/d61e8e2a4fa3a4bfb097b044609a1f3980860368e398d8c55fe9ede6bcea/BFG-Y2H-0.1.2.tar.gz
BuildArch: noarch
%description
### BFG Y2H Analysis Pipeline ###
**Requirements**
* Python 3.7
* Bowtie 2 and Bowtie2 build
### Files required ###
The pipeline requires reference files before running. They can be found on GALEN:
```
all reference files contain all the barcodes in fasta format
path: /home/rothlab/rli/02_dev/08_bfg_y2h/bfg_data/reference/
```
Before running the pipeline, you need to copy everything in these two folders to your designated directory.
#### Build new reference ###
If you need to build a new reference for your analysis, please follow:
1. You can refer to the create_fasta.py script to build the new fasta file
2. Make sure the name for the sequences follows the format: `>*;ORF-BC-ID;*;up/dn`. In other words, the ORF-ID should always
be the second item, and the up/dn identifier should always be the last item. (see examples below)
3. Example sequences in output fasta file:
```
>G1;YDL169C_BC-1;7;up
CCCTTAGAACCGAGAGTGTGGGTTAAATGGGTGAATTCAGGGATTCACTCCGTTCGTCACTCAATAA
>G1;YMR206W_BC-1;1.0;DB;up
CCATACGAGCACATTACGGGGCTTGAGTTATATAGTCGATCCGGGCTAACTCGCATACCTCTGATAAC
>G09;56346_BC-1;24126.0;DB;dn
TCGATAGGTGCGTGTGAAGGATGTTCCCCCGGTCACCGGGCCAGTCCTCAGTCGCTCAGTCAAG
```
4. After making the fasta file, build index with bowtie2-build
`bowtie2-build filename.fasta filename`
5. Update main.py to use the summary files you generated
* Edit parse_input_files() to add a case
### Running the pipeline ###
* Install from pypi (recommend): `python -m pip install BFG-Y2H`
* Install and build from github, the update.sh might need to be modified before you install
```
1. download the package from github
2. inside the root folder, run ./update.sh
```
1. Input arguments:
```
usage: bfg [-h] [--fastq FASTQ] [--output OUTPUT] --mode MODE [--alignment]
[--ref REF] [--cutOff CUTOFF]
BFG-Y2H
optional arguments:
-h, --help show this help message and exit
--fastq FASTQ Path to all fastq files you want to analyze
--output OUTPUT Output path for sam files
--mode MODE pick yeast or human or virus or hedgy or LAgag
--alignment turn on alignment
--ref REF path to all reference files
--cutOff CUTOFF assign cut off
```
2. All the input fastq files should have names following the format: y|hAD*DB*_GFP_(pre|med|high) (for human and yeast)
3. Run the pipeline on GALEN
```
# this will run the pipeline using slurm
# all the fastq files in the given folder will be processed
# run with alignment
bfg --fastq /path/to/fastq_files/ --output /path/to/output_dir/ --mode yeast/human/virus/hedgy --alignment --ref path/to/reference
# if alignment was finished, you want to only do read counts
bfg --fastq /path/to/fastq_files/ --output /path/to/output_dir/ --mode yeast/human/virus/hedgy --ref path/to/reference
```
### Output files ###
* After running the pipeline, one folder will be generated for each group pair (yAD*DB*)
* The folder called `GALEN_jobs` saves all the bash scripts submited to GALEN
* In the output folder for each group pair, we aligned R1 and R2 separately to the reference sequences for GFP_pre, GFP_med and GFP_high.
* `*_sorted.sam`: Raw sam files generated from bowtie2
* `*_noh.csv`: shrinked sam files, used for scoring
* `*_counts.csv`: barcode counts for uptags, dntags, and combined (up+dn)
%package -n python3-BFG-Y2H
Summary: Analysis scripts for BFG-Y2H data
Provides: python-BFG-Y2H
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-BFG-Y2H
### BFG Y2H Analysis Pipeline ###
**Requirements**
* Python 3.7
* Bowtie 2 and Bowtie2 build
### Files required ###
The pipeline requires reference files before running. They can be found on GALEN:
```
all reference files contain all the barcodes in fasta format
path: /home/rothlab/rli/02_dev/08_bfg_y2h/bfg_data/reference/
```
Before running the pipeline, you need to copy everything in these two folders to your designated directory.
#### Build new reference ###
If you need to build a new reference for your analysis, please follow:
1. You can refer to the create_fasta.py script to build the new fasta file
2. Make sure the name for the sequences follows the format: `>*;ORF-BC-ID;*;up/dn`. In other words, the ORF-ID should always
be the second item, and the up/dn identifier should always be the last item. (see examples below)
3. Example sequences in output fasta file:
```
>G1;YDL169C_BC-1;7;up
CCCTTAGAACCGAGAGTGTGGGTTAAATGGGTGAATTCAGGGATTCACTCCGTTCGTCACTCAATAA
>G1;YMR206W_BC-1;1.0;DB;up
CCATACGAGCACATTACGGGGCTTGAGTTATATAGTCGATCCGGGCTAACTCGCATACCTCTGATAAC
>G09;56346_BC-1;24126.0;DB;dn
TCGATAGGTGCGTGTGAAGGATGTTCCCCCGGTCACCGGGCCAGTCCTCAGTCGCTCAGTCAAG
```
4. After making the fasta file, build index with bowtie2-build
`bowtie2-build filename.fasta filename`
5. Update main.py to use the summary files you generated
* Edit parse_input_files() to add a case
### Running the pipeline ###
* Install from pypi (recommend): `python -m pip install BFG-Y2H`
* Install and build from github, the update.sh might need to be modified before you install
```
1. download the package from github
2. inside the root folder, run ./update.sh
```
1. Input arguments:
```
usage: bfg [-h] [--fastq FASTQ] [--output OUTPUT] --mode MODE [--alignment]
[--ref REF] [--cutOff CUTOFF]
BFG-Y2H
optional arguments:
-h, --help show this help message and exit
--fastq FASTQ Path to all fastq files you want to analyze
--output OUTPUT Output path for sam files
--mode MODE pick yeast or human or virus or hedgy or LAgag
--alignment turn on alignment
--ref REF path to all reference files
--cutOff CUTOFF assign cut off
```
2. All the input fastq files should have names following the format: y|hAD*DB*_GFP_(pre|med|high) (for human and yeast)
3. Run the pipeline on GALEN
```
# this will run the pipeline using slurm
# all the fastq files in the given folder will be processed
# run with alignment
bfg --fastq /path/to/fastq_files/ --output /path/to/output_dir/ --mode yeast/human/virus/hedgy --alignment --ref path/to/reference
# if alignment was finished, you want to only do read counts
bfg --fastq /path/to/fastq_files/ --output /path/to/output_dir/ --mode yeast/human/virus/hedgy --ref path/to/reference
```
### Output files ###
* After running the pipeline, one folder will be generated for each group pair (yAD*DB*)
* The folder called `GALEN_jobs` saves all the bash scripts submited to GALEN
* In the output folder for each group pair, we aligned R1 and R2 separately to the reference sequences for GFP_pre, GFP_med and GFP_high.
* `*_sorted.sam`: Raw sam files generated from bowtie2
* `*_noh.csv`: shrinked sam files, used for scoring
* `*_counts.csv`: barcode counts for uptags, dntags, and combined (up+dn)
%package help
Summary: Development documents and examples for BFG-Y2H
Provides: python3-BFG-Y2H-doc
%description help
### BFG Y2H Analysis Pipeline ###
**Requirements**
* Python 3.7
* Bowtie 2 and Bowtie2 build
### Files required ###
The pipeline requires reference files before running. They can be found on GALEN:
```
all reference files contain all the barcodes in fasta format
path: /home/rothlab/rli/02_dev/08_bfg_y2h/bfg_data/reference/
```
Before running the pipeline, you need to copy everything in these two folders to your designated directory.
#### Build new reference ###
If you need to build a new reference for your analysis, please follow:
1. You can refer to the create_fasta.py script to build the new fasta file
2. Make sure the name for the sequences follows the format: `>*;ORF-BC-ID;*;up/dn`. In other words, the ORF-ID should always
be the second item, and the up/dn identifier should always be the last item. (see examples below)
3. Example sequences in output fasta file:
```
>G1;YDL169C_BC-1;7;up
CCCTTAGAACCGAGAGTGTGGGTTAAATGGGTGAATTCAGGGATTCACTCCGTTCGTCACTCAATAA
>G1;YMR206W_BC-1;1.0;DB;up
CCATACGAGCACATTACGGGGCTTGAGTTATATAGTCGATCCGGGCTAACTCGCATACCTCTGATAAC
>G09;56346_BC-1;24126.0;DB;dn
TCGATAGGTGCGTGTGAAGGATGTTCCCCCGGTCACCGGGCCAGTCCTCAGTCGCTCAGTCAAG
```
4. After making the fasta file, build index with bowtie2-build
`bowtie2-build filename.fasta filename`
5. Update main.py to use the summary files you generated
* Edit parse_input_files() to add a case
### Running the pipeline ###
* Install from pypi (recommend): `python -m pip install BFG-Y2H`
* Install and build from github, the update.sh might need to be modified before you install
```
1. download the package from github
2. inside the root folder, run ./update.sh
```
1. Input arguments:
```
usage: bfg [-h] [--fastq FASTQ] [--output OUTPUT] --mode MODE [--alignment]
[--ref REF] [--cutOff CUTOFF]
BFG-Y2H
optional arguments:
-h, --help show this help message and exit
--fastq FASTQ Path to all fastq files you want to analyze
--output OUTPUT Output path for sam files
--mode MODE pick yeast or human or virus or hedgy or LAgag
--alignment turn on alignment
--ref REF path to all reference files
--cutOff CUTOFF assign cut off
```
2. All the input fastq files should have names following the format: y|hAD*DB*_GFP_(pre|med|high) (for human and yeast)
3. Run the pipeline on GALEN
```
# this will run the pipeline using slurm
# all the fastq files in the given folder will be processed
# run with alignment
bfg --fastq /path/to/fastq_files/ --output /path/to/output_dir/ --mode yeast/human/virus/hedgy --alignment --ref path/to/reference
# if alignment was finished, you want to only do read counts
bfg --fastq /path/to/fastq_files/ --output /path/to/output_dir/ --mode yeast/human/virus/hedgy --ref path/to/reference
```
### Output files ###
* After running the pipeline, one folder will be generated for each group pair (yAD*DB*)
* The folder called `GALEN_jobs` saves all the bash scripts submited to GALEN
* In the output folder for each group pair, we aligned R1 and R2 separately to the reference sequences for GFP_pre, GFP_med and GFP_high.
* `*_sorted.sam`: Raw sam files generated from bowtie2
* `*_noh.csv`: shrinked sam files, used for scoring
* `*_counts.csv`: barcode counts for uptags, dntags, and combined (up+dn)
%prep
%autosetup -n BFG-Y2H-0.1.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-BFG-Y2H -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.2-1
- Package Spec generated
|