summaryrefslogtreecommitdiff
path: root/python-Bottleneck.spec
blob: 8a6933113353ad047f0d3d1276b54592a340736b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
%global _empty_manifest_terminate_build 0
Name:		python-Bottleneck
Version:	1.3.6
Release:	1
Summary:	Fast NumPy array functions written in C
License:	Simplified BSD
URL:		https://github.com/pydata/bottleneck
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/4a/4f/2ee4ee0494384891fa7784d774affbcf2ad6c9ddb33b1fd211da86739513/Bottleneck-1.3.6.tar.gz

Requires:	python3-sphinx
Requires:	python3-numpy
Requires:	python3-numpydoc
Requires:	python3-gitpython

%description
Bottleneck comes with a benchmark suite::
    >>> bn.bench()
    Bottleneck performance benchmark
        Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
        Speed is NumPy time divided by Bottleneck time
        NaN means approx one-fifth NaNs; float64 used
                  no NaN     no NaN      NaN       no NaN      NaN
                   (100,)  (1000,1000)(1000,1000)(1000,1000)(1000,1000)
                   axis=0     axis=0     axis=0     axis=1     axis=1
    nansum         29.7        1.4        1.6        2.0        2.1
    nanmean        99.0        2.0        1.8        3.2        2.5
    nanstd        145.6        1.8        1.8        2.7        2.5
    nanvar        138.4        1.8        1.8        2.8        2.5
    nanmin         27.6        0.5        1.7        0.7        2.4
    nanmax         26.6        0.6        1.6        0.7        2.5
    median        120.6        1.3        4.9        1.1        5.7
    nanmedian     117.8        5.0        5.7        4.8        5.5
    ss             13.2        1.2        1.3        1.5        1.5
    nanargmin      66.8        5.5        4.8        3.5        7.1
    nanargmax      57.6        2.9        5.1        2.5        5.3
    anynan         10.2        0.3       52.3        0.8       41.6
    allnan         15.1      196.0      156.3      135.8      111.2
    rankdata       45.9        1.2        1.2        2.1        2.1
    nanrankdata    50.5        1.4        1.3        2.4        2.3
    partition       3.3        1.1        1.6        1.0        1.5
    argpartition    3.4        1.2        1.5        1.1        1.6
    replace         9.0        1.5        1.5        1.5        1.5
    push         1565.6        5.9        7.0       13.0       10.9
    move_sum     2159.3       31.1       83.6      186.9      182.5
    move_mean    6264.3       66.2      111.9      361.1      246.5
    move_std     8653.6       86.5      163.7      232.0      317.7
    move_var     8856.0       96.3      171.6      267.9      332.9
    move_min     1186.6       13.4       30.9       23.5       45.0
    move_max     1188.0       14.6       29.9       23.5       46.0
    move_argmin  2568.3       33.3       61.0       49.2       86.8
    move_argmax  2475.8       30.9       58.6       45.0       82.8
    move_median  2236.9      153.9      151.4      171.3      166.9
    move_rank     847.1        1.2        1.4        2.3        2.6
You can also run a detailed benchmark for a single function using, for
example, the command::
    >>> bn.bench_detailed("move_median", fraction_nan=0.3)
Only arrays with data type (dtype) int32, int64, float32, and float64 are
accelerated. All other dtypes result in calls to slower, unaccelerated
functions. In the rare case of a byte-swapped input array (e.g. a big-endian
array on a little-endian operating system) the function will not be
accelerated regardless of dtype.

%package -n python3-Bottleneck
Summary:	Fast NumPy array functions written in C
Provides:	python-Bottleneck
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-Bottleneck
Bottleneck comes with a benchmark suite::
    >>> bn.bench()
    Bottleneck performance benchmark
        Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
        Speed is NumPy time divided by Bottleneck time
        NaN means approx one-fifth NaNs; float64 used
                  no NaN     no NaN      NaN       no NaN      NaN
                   (100,)  (1000,1000)(1000,1000)(1000,1000)(1000,1000)
                   axis=0     axis=0     axis=0     axis=1     axis=1
    nansum         29.7        1.4        1.6        2.0        2.1
    nanmean        99.0        2.0        1.8        3.2        2.5
    nanstd        145.6        1.8        1.8        2.7        2.5
    nanvar        138.4        1.8        1.8        2.8        2.5
    nanmin         27.6        0.5        1.7        0.7        2.4
    nanmax         26.6        0.6        1.6        0.7        2.5
    median        120.6        1.3        4.9        1.1        5.7
    nanmedian     117.8        5.0        5.7        4.8        5.5
    ss             13.2        1.2        1.3        1.5        1.5
    nanargmin      66.8        5.5        4.8        3.5        7.1
    nanargmax      57.6        2.9        5.1        2.5        5.3
    anynan         10.2        0.3       52.3        0.8       41.6
    allnan         15.1      196.0      156.3      135.8      111.2
    rankdata       45.9        1.2        1.2        2.1        2.1
    nanrankdata    50.5        1.4        1.3        2.4        2.3
    partition       3.3        1.1        1.6        1.0        1.5
    argpartition    3.4        1.2        1.5        1.1        1.6
    replace         9.0        1.5        1.5        1.5        1.5
    push         1565.6        5.9        7.0       13.0       10.9
    move_sum     2159.3       31.1       83.6      186.9      182.5
    move_mean    6264.3       66.2      111.9      361.1      246.5
    move_std     8653.6       86.5      163.7      232.0      317.7
    move_var     8856.0       96.3      171.6      267.9      332.9
    move_min     1186.6       13.4       30.9       23.5       45.0
    move_max     1188.0       14.6       29.9       23.5       46.0
    move_argmin  2568.3       33.3       61.0       49.2       86.8
    move_argmax  2475.8       30.9       58.6       45.0       82.8
    move_median  2236.9      153.9      151.4      171.3      166.9
    move_rank     847.1        1.2        1.4        2.3        2.6
You can also run a detailed benchmark for a single function using, for
example, the command::
    >>> bn.bench_detailed("move_median", fraction_nan=0.3)
Only arrays with data type (dtype) int32, int64, float32, and float64 are
accelerated. All other dtypes result in calls to slower, unaccelerated
functions. In the rare case of a byte-swapped input array (e.g. a big-endian
array on a little-endian operating system) the function will not be
accelerated regardless of dtype.

%package help
Summary:	Development documents and examples for Bottleneck
Provides:	python3-Bottleneck-doc
%description help
Bottleneck comes with a benchmark suite::
    >>> bn.bench()
    Bottleneck performance benchmark
        Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
        Speed is NumPy time divided by Bottleneck time
        NaN means approx one-fifth NaNs; float64 used
                  no NaN     no NaN      NaN       no NaN      NaN
                   (100,)  (1000,1000)(1000,1000)(1000,1000)(1000,1000)
                   axis=0     axis=0     axis=0     axis=1     axis=1
    nansum         29.7        1.4        1.6        2.0        2.1
    nanmean        99.0        2.0        1.8        3.2        2.5
    nanstd        145.6        1.8        1.8        2.7        2.5
    nanvar        138.4        1.8        1.8        2.8        2.5
    nanmin         27.6        0.5        1.7        0.7        2.4
    nanmax         26.6        0.6        1.6        0.7        2.5
    median        120.6        1.3        4.9        1.1        5.7
    nanmedian     117.8        5.0        5.7        4.8        5.5
    ss             13.2        1.2        1.3        1.5        1.5
    nanargmin      66.8        5.5        4.8        3.5        7.1
    nanargmax      57.6        2.9        5.1        2.5        5.3
    anynan         10.2        0.3       52.3        0.8       41.6
    allnan         15.1      196.0      156.3      135.8      111.2
    rankdata       45.9        1.2        1.2        2.1        2.1
    nanrankdata    50.5        1.4        1.3        2.4        2.3
    partition       3.3        1.1        1.6        1.0        1.5
    argpartition    3.4        1.2        1.5        1.1        1.6
    replace         9.0        1.5        1.5        1.5        1.5
    push         1565.6        5.9        7.0       13.0       10.9
    move_sum     2159.3       31.1       83.6      186.9      182.5
    move_mean    6264.3       66.2      111.9      361.1      246.5
    move_std     8653.6       86.5      163.7      232.0      317.7
    move_var     8856.0       96.3      171.6      267.9      332.9
    move_min     1186.6       13.4       30.9       23.5       45.0
    move_max     1188.0       14.6       29.9       23.5       46.0
    move_argmin  2568.3       33.3       61.0       49.2       86.8
    move_argmax  2475.8       30.9       58.6       45.0       82.8
    move_median  2236.9      153.9      151.4      171.3      166.9
    move_rank     847.1        1.2        1.4        2.3        2.6
You can also run a detailed benchmark for a single function using, for
example, the command::
    >>> bn.bench_detailed("move_median", fraction_nan=0.3)
Only arrays with data type (dtype) int32, int64, float32, and float64 are
accelerated. All other dtypes result in calls to slower, unaccelerated
functions. In the rare case of a byte-swapped input array (e.g. a big-endian
array on a little-endian operating system) the function will not be
accelerated regardless of dtype.

%prep
%autosetup -n Bottleneck-1.3.6

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-Bottleneck -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Mar 06 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.6-1
- Package Spec generated