diff options
author | CoprDistGit <infra@openeuler.org> | 2023-06-20 07:24:07 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-06-20 07:24:07 +0000 |
commit | 605ed93b9d0722e3782d9e97f13b9244ea0024fb (patch) | |
tree | de9f5c6e9d64359b1d249a0b3d6d73829e4543a4 | |
parent | ed52173d57d7a59763b3cc16a28fbef5c89e60c0 (diff) |
automatic import of python-Easy-QLearningopeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-easy-qlearning.spec | 350 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 352 insertions, 0 deletions
@@ -0,0 +1 @@ +/Easy-QLearning-1.1.0.tar.gz diff --git a/python-easy-qlearning.spec b/python-easy-qlearning.spec new file mode 100644 index 0000000..16a695c --- /dev/null +++ b/python-easy-qlearning.spec @@ -0,0 +1,350 @@ +%global _empty_manifest_terminate_build 0 +Name: python-Easy-QLearning +Version: 1.1.0 +Release: 1 +Summary: Simplify the creation of QLearning +License: MIT License +URL: https://github.com/ProfesseurIssou/Easy-QLearning +Source0: https://mirrors.aliyun.com/pypi/web/packages/34/38/b5321d647a5e20327b58e9da1fb353f3df455f49f0682004863b57a42c82/Easy-QLearning-1.1.0.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-pytest + +%description +# EQL + +Simplify the creation of QLearning + + +## Installation + +Run the following to install: +```python +pip install Easy-QLearning +``` + + +## Usage +```python +import EQL +####Initialise QTable#### +#Mission: go to the house without run over the human +#Game grid +Grid = [#1 = House, -1 = Human + [0,0,1], + [0,-1,0], + [0,0,0] +] + +#First car position coordinates +x = 0 +y = 2 +#Current state +state = 7 +#Action list and travel coordinate +actions = [ + [-1, 0], # Up + [1, 0], #Down + [0, -1], # Left + [0, 1] # Right +] + +#Make QTable +Qtable = EQL.QLearning(nbAction=4,nbState=10) + +####Train the QTable#### +#100 games +for _ in range(100): + #Reset the car position + x = 0 + y = 2 + #Default state + state = 7 + #While the car are not in the house + while x != 2 or y != 0: + #Display the grid + print("---------------------") + yTemp = 0 + for line in Grid: + xTemp = 0 + for pt in line: + print("%s\t" % (pt if yTemp != y or xTemp != x else "X"), end="") + xTemp += 1 + yTemp += 1 + print("") + #Choose an action + action = Qtable.takeAction(state,epsilon=0.4) + #Move the car + y = max(0, min(y + actions[action][0],2)) + x = max(0, min(x + actions[action][1],2)) + #Calcul the position in the grid (state) + newState = (y*3+x+1) + #Get the reward of the position + reward = Grid[y][x] + print("state : ", newState) + print("reward : ", reward) + #Update Q function + Qtable.updateQFunction(newState,state,reward) + #Next state + state = newState +#Display the QTable +for s in range(0, 9): + print(s, Qtable.QTable[s]) + +#Save my QTable in myTable.npz +Qtable.saveQTable("myTable") + +#Load my QTable from myTable.npz +Qtable.loadQTable("myTable") +``` + + +```bash +$ pip install -e .[dev] +``` + + + +%package -n python3-Easy-QLearning +Summary: Simplify the creation of QLearning +Provides: python-Easy-QLearning +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-Easy-QLearning +# EQL + +Simplify the creation of QLearning + + +## Installation + +Run the following to install: +```python +pip install Easy-QLearning +``` + + +## Usage +```python +import EQL +####Initialise QTable#### +#Mission: go to the house without run over the human +#Game grid +Grid = [#1 = House, -1 = Human + [0,0,1], + [0,-1,0], + [0,0,0] +] + +#First car position coordinates +x = 0 +y = 2 +#Current state +state = 7 +#Action list and travel coordinate +actions = [ + [-1, 0], # Up + [1, 0], #Down + [0, -1], # Left + [0, 1] # Right +] + +#Make QTable +Qtable = EQL.QLearning(nbAction=4,nbState=10) + +####Train the QTable#### +#100 games +for _ in range(100): + #Reset the car position + x = 0 + y = 2 + #Default state + state = 7 + #While the car are not in the house + while x != 2 or y != 0: + #Display the grid + print("---------------------") + yTemp = 0 + for line in Grid: + xTemp = 0 + for pt in line: + print("%s\t" % (pt if yTemp != y or xTemp != x else "X"), end="") + xTemp += 1 + yTemp += 1 + print("") + #Choose an action + action = Qtable.takeAction(state,epsilon=0.4) + #Move the car + y = max(0, min(y + actions[action][0],2)) + x = max(0, min(x + actions[action][1],2)) + #Calcul the position in the grid (state) + newState = (y*3+x+1) + #Get the reward of the position + reward = Grid[y][x] + print("state : ", newState) + print("reward : ", reward) + #Update Q function + Qtable.updateQFunction(newState,state,reward) + #Next state + state = newState +#Display the QTable +for s in range(0, 9): + print(s, Qtable.QTable[s]) + +#Save my QTable in myTable.npz +Qtable.saveQTable("myTable") + +#Load my QTable from myTable.npz +Qtable.loadQTable("myTable") +``` + + +```bash +$ pip install -e .[dev] +``` + + + +%package help +Summary: Development documents and examples for Easy-QLearning +Provides: python3-Easy-QLearning-doc +%description help +# EQL + +Simplify the creation of QLearning + + +## Installation + +Run the following to install: +```python +pip install Easy-QLearning +``` + + +## Usage +```python +import EQL +####Initialise QTable#### +#Mission: go to the house without run over the human +#Game grid +Grid = [#1 = House, -1 = Human + [0,0,1], + [0,-1,0], + [0,0,0] +] + +#First car position coordinates +x = 0 +y = 2 +#Current state +state = 7 +#Action list and travel coordinate +actions = [ + [-1, 0], # Up + [1, 0], #Down + [0, -1], # Left + [0, 1] # Right +] + +#Make QTable +Qtable = EQL.QLearning(nbAction=4,nbState=10) + +####Train the QTable#### +#100 games +for _ in range(100): + #Reset the car position + x = 0 + y = 2 + #Default state + state = 7 + #While the car are not in the house + while x != 2 or y != 0: + #Display the grid + print("---------------------") + yTemp = 0 + for line in Grid: + xTemp = 0 + for pt in line: + print("%s\t" % (pt if yTemp != y or xTemp != x else "X"), end="") + xTemp += 1 + yTemp += 1 + print("") + #Choose an action + action = Qtable.takeAction(state,epsilon=0.4) + #Move the car + y = max(0, min(y + actions[action][0],2)) + x = max(0, min(x + actions[action][1],2)) + #Calcul the position in the grid (state) + newState = (y*3+x+1) + #Get the reward of the position + reward = Grid[y][x] + print("state : ", newState) + print("reward : ", reward) + #Update Q function + Qtable.updateQFunction(newState,state,reward) + #Next state + state = newState +#Display the QTable +for s in range(0, 9): + print(s, Qtable.QTable[s]) + +#Save my QTable in myTable.npz +Qtable.saveQTable("myTable") + +#Load my QTable from myTable.npz +Qtable.loadQTable("myTable") +``` + + +```bash +$ pip install -e .[dev] +``` + + + +%prep +%autosetup -n Easy-QLearning-1.1.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-Easy-QLearning -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1 +- Package Spec generated @@ -0,0 +1 @@ +278776fbeea9d81d03c51bf2f38475dc Easy-QLearning-1.1.0.tar.gz |