1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
%global _empty_manifest_terminate_build 0
Name: python-GoTermAnalysis
Version: 0.2.6
Release: 1
Summary: Given lists of genes, find its associated gene ontology term enrichment and merge them up
License: UNKNOWN
URL: http://pypi.python.org/pypi/GoTermAnalysis/
Source0: https://mirrors.aliyun.com/pypi/web/packages/35/1b/7d64f74928f988f5a5b6a4aed85edeb157bdb007740fb8e2a44fbd60919b/GoTermAnalysis-0.2.6.tar.gz
BuildArch: noarch
%description
This package is for gene ontology analysis. It has 2 main functions: 1. It receives a gene list, and give back the enrichment and merge result. 2. It can update to the newest gene ontology database.
First import this package:
from gotermanalysis import *
1. ############################Update#############################
How to update?
(1). #################update database##################
Before update database, user must complete the following steps:
a. download the newest database dump: http://archive.geneontology.org/latest-lite/
b. add .sql to current database dump file, for example: change "go_20151003-assocdb-data" to "go_20151003-assocdb-data.sql"
c. log into database on server and type the following command:
DROP DATABASE IF EXISTS assocdb
CREATE DATABASE assocdb
quit
d. type the following command:
mysql -h localhost -u username -p assocdb <dbdump
for example:
mysql -h localhost -u username -p assocdb <go_20151003-assocdb-data.sql
e. download newest NCBI homo gene file: http://www.ncbi.nlm.nih.gov/gene/
click Download/FTP on left column, directory is Data —> GENE_INFO —> Mammalia —> Homo_sapiens.gene_info.gz, after download it, change file type to .txt
Then Create an instance for updating database and call function to update.
Parameters:
a. homo_gene_directory is the directory that of the previous downloaded NCBI homo gene txt file.
Example of updating database:
mydb = updateDB.UpdateDB(host, username, password, "assocdb”, homo_gene_directory)
mydb.update()
(2) #################update pubmeds##################
###download and parse###
Parameters:
a. pubmed_directory is the directory that user wants to store the pubmed articles
b. parsed_pubmed_directory is the directory that user wants to store the parsed pubmed articles
Example of updating pubmeds:
tool = downloadPubMed.DownloadPubMed(host, username, password, "assocdb”, pubmed_directory, parsed_pubmed_directory)
tool.parse()
###Name entity recognition process###
The name entity recognition process this package using is ABNER. It was developed by Burr Settles, Department of Computer Sciences, University of Wisconsin-Madison. It was written in Java. For more information, you can go to: http://pages.cs.wisc.edu/~bsettles/abner/
Step of use ABNER.
a. find these 3 files: abner.jar, Tagging.java, Tagging.class. They are wrapping up as extra file in the package.
b. when you find it and locate in the path, enter the following command in terminal:
java -cp .:abner.jar Tagging inputpath outputpath
input path indicates where you pubmeds are, outputpath indicates where you want to store the pubmeds after ABNER analysis
An example of using ABNER:
java -cp .:abner.jar Tagging /Users/YUFAN/Desktop/parsedPubMeds /Users/YUFAN/Desktop/files.xml
(3). #################update weights##################
This part builds a GOterm graph structure, and calculate the new weights in this structure
Parameters:
a. input_filepath: parsed pubmeds with ABNER
b. output_filepath: directory to store the output file, output file is a GO term graph structure
Example of how to update weights:
g=goStructure.GoStructure(host, username, password, "assocdb”, input_filepath, output_filepath)
g.updateWeights()
3. ############################Analysis############################
How to do gene ontology term analysis?
(1). ######enrichment######
Parameters:
a. inputfile: genelists in a csv file: every row is a list, the first column is drivers of this gene list.
b. outputfile_path: directory to store the enrichment result. The number of outputfiles is same with the numbers of genelists in input file. Each output file is named by the driver of each genelist.
c. p_value: minimum p-value required for go terms to be enriched
d. top: is an optional parameter for picking up the top number of enrichment result (e.g. top 5 or top 10), by default is none.
create an instance for enrichment class, then call the function. Example of how to use this class:
tool = enrichment.Enrichment(host, username, password, "assocdb", inputfile, outputfile_path, 0.01)
tool.enrich_csv(top = none)
(2) ######merge######
Parameters:
a. weightGographData: a xml file which represents Gene Ontology structure, for example “weightedGoGraph.xml"
b. genelist: a csv file contains a genelist (Each input cvs file must contain only one genelist, which means it only has one row!!)
c. output: output_directory
d. p_value: minimum p-value required for go terms to be enriched
e. subGenelistNo: minimum number of genes required for go terms to be enriched
#Create a GoGraph object (Note: every time you use the gotermSummarization(), you need to create a new object)
gograph = merge.GoGraph(weightGographData, genelist, output, p_value, subGenelistNo, host, username, password, "assocdb")
gograph.gotermSummarization()
Result is in the output directory
%package -n python3-GoTermAnalysis
Summary: Given lists of genes, find its associated gene ontology term enrichment and merge them up
Provides: python-GoTermAnalysis
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-GoTermAnalysis
This package is for gene ontology analysis. It has 2 main functions: 1. It receives a gene list, and give back the enrichment and merge result. 2. It can update to the newest gene ontology database.
First import this package:
from gotermanalysis import *
1. ############################Update#############################
How to update?
(1). #################update database##################
Before update database, user must complete the following steps:
a. download the newest database dump: http://archive.geneontology.org/latest-lite/
b. add .sql to current database dump file, for example: change "go_20151003-assocdb-data" to "go_20151003-assocdb-data.sql"
c. log into database on server and type the following command:
DROP DATABASE IF EXISTS assocdb
CREATE DATABASE assocdb
quit
d. type the following command:
mysql -h localhost -u username -p assocdb <dbdump
for example:
mysql -h localhost -u username -p assocdb <go_20151003-assocdb-data.sql
e. download newest NCBI homo gene file: http://www.ncbi.nlm.nih.gov/gene/
click Download/FTP on left column, directory is Data —> GENE_INFO —> Mammalia —> Homo_sapiens.gene_info.gz, after download it, change file type to .txt
Then Create an instance for updating database and call function to update.
Parameters:
a. homo_gene_directory is the directory that of the previous downloaded NCBI homo gene txt file.
Example of updating database:
mydb = updateDB.UpdateDB(host, username, password, "assocdb”, homo_gene_directory)
mydb.update()
(2) #################update pubmeds##################
###download and parse###
Parameters:
a. pubmed_directory is the directory that user wants to store the pubmed articles
b. parsed_pubmed_directory is the directory that user wants to store the parsed pubmed articles
Example of updating pubmeds:
tool = downloadPubMed.DownloadPubMed(host, username, password, "assocdb”, pubmed_directory, parsed_pubmed_directory)
tool.parse()
###Name entity recognition process###
The name entity recognition process this package using is ABNER. It was developed by Burr Settles, Department of Computer Sciences, University of Wisconsin-Madison. It was written in Java. For more information, you can go to: http://pages.cs.wisc.edu/~bsettles/abner/
Step of use ABNER.
a. find these 3 files: abner.jar, Tagging.java, Tagging.class. They are wrapping up as extra file in the package.
b. when you find it and locate in the path, enter the following command in terminal:
java -cp .:abner.jar Tagging inputpath outputpath
input path indicates where you pubmeds are, outputpath indicates where you want to store the pubmeds after ABNER analysis
An example of using ABNER:
java -cp .:abner.jar Tagging /Users/YUFAN/Desktop/parsedPubMeds /Users/YUFAN/Desktop/files.xml
(3). #################update weights##################
This part builds a GOterm graph structure, and calculate the new weights in this structure
Parameters:
a. input_filepath: parsed pubmeds with ABNER
b. output_filepath: directory to store the output file, output file is a GO term graph structure
Example of how to update weights:
g=goStructure.GoStructure(host, username, password, "assocdb”, input_filepath, output_filepath)
g.updateWeights()
3. ############################Analysis############################
How to do gene ontology term analysis?
(1). ######enrichment######
Parameters:
a. inputfile: genelists in a csv file: every row is a list, the first column is drivers of this gene list.
b. outputfile_path: directory to store the enrichment result. The number of outputfiles is same with the numbers of genelists in input file. Each output file is named by the driver of each genelist.
c. p_value: minimum p-value required for go terms to be enriched
d. top: is an optional parameter for picking up the top number of enrichment result (e.g. top 5 or top 10), by default is none.
create an instance for enrichment class, then call the function. Example of how to use this class:
tool = enrichment.Enrichment(host, username, password, "assocdb", inputfile, outputfile_path, 0.01)
tool.enrich_csv(top = none)
(2) ######merge######
Parameters:
a. weightGographData: a xml file which represents Gene Ontology structure, for example “weightedGoGraph.xml"
b. genelist: a csv file contains a genelist (Each input cvs file must contain only one genelist, which means it only has one row!!)
c. output: output_directory
d. p_value: minimum p-value required for go terms to be enriched
e. subGenelistNo: minimum number of genes required for go terms to be enriched
#Create a GoGraph object (Note: every time you use the gotermSummarization(), you need to create a new object)
gograph = merge.GoGraph(weightGographData, genelist, output, p_value, subGenelistNo, host, username, password, "assocdb")
gograph.gotermSummarization()
Result is in the output directory
%package help
Summary: Development documents and examples for GoTermAnalysis
Provides: python3-GoTermAnalysis-doc
%description help
This package is for gene ontology analysis. It has 2 main functions: 1. It receives a gene list, and give back the enrichment and merge result. 2. It can update to the newest gene ontology database.
First import this package:
from gotermanalysis import *
1. ############################Update#############################
How to update?
(1). #################update database##################
Before update database, user must complete the following steps:
a. download the newest database dump: http://archive.geneontology.org/latest-lite/
b. add .sql to current database dump file, for example: change "go_20151003-assocdb-data" to "go_20151003-assocdb-data.sql"
c. log into database on server and type the following command:
DROP DATABASE IF EXISTS assocdb
CREATE DATABASE assocdb
quit
d. type the following command:
mysql -h localhost -u username -p assocdb <dbdump
for example:
mysql -h localhost -u username -p assocdb <go_20151003-assocdb-data.sql
e. download newest NCBI homo gene file: http://www.ncbi.nlm.nih.gov/gene/
click Download/FTP on left column, directory is Data —> GENE_INFO —> Mammalia —> Homo_sapiens.gene_info.gz, after download it, change file type to .txt
Then Create an instance for updating database and call function to update.
Parameters:
a. homo_gene_directory is the directory that of the previous downloaded NCBI homo gene txt file.
Example of updating database:
mydb = updateDB.UpdateDB(host, username, password, "assocdb”, homo_gene_directory)
mydb.update()
(2) #################update pubmeds##################
###download and parse###
Parameters:
a. pubmed_directory is the directory that user wants to store the pubmed articles
b. parsed_pubmed_directory is the directory that user wants to store the parsed pubmed articles
Example of updating pubmeds:
tool = downloadPubMed.DownloadPubMed(host, username, password, "assocdb”, pubmed_directory, parsed_pubmed_directory)
tool.parse()
###Name entity recognition process###
The name entity recognition process this package using is ABNER. It was developed by Burr Settles, Department of Computer Sciences, University of Wisconsin-Madison. It was written in Java. For more information, you can go to: http://pages.cs.wisc.edu/~bsettles/abner/
Step of use ABNER.
a. find these 3 files: abner.jar, Tagging.java, Tagging.class. They are wrapping up as extra file in the package.
b. when you find it and locate in the path, enter the following command in terminal:
java -cp .:abner.jar Tagging inputpath outputpath
input path indicates where you pubmeds are, outputpath indicates where you want to store the pubmeds after ABNER analysis
An example of using ABNER:
java -cp .:abner.jar Tagging /Users/YUFAN/Desktop/parsedPubMeds /Users/YUFAN/Desktop/files.xml
(3). #################update weights##################
This part builds a GOterm graph structure, and calculate the new weights in this structure
Parameters:
a. input_filepath: parsed pubmeds with ABNER
b. output_filepath: directory to store the output file, output file is a GO term graph structure
Example of how to update weights:
g=goStructure.GoStructure(host, username, password, "assocdb”, input_filepath, output_filepath)
g.updateWeights()
3. ############################Analysis############################
How to do gene ontology term analysis?
(1). ######enrichment######
Parameters:
a. inputfile: genelists in a csv file: every row is a list, the first column is drivers of this gene list.
b. outputfile_path: directory to store the enrichment result. The number of outputfiles is same with the numbers of genelists in input file. Each output file is named by the driver of each genelist.
c. p_value: minimum p-value required for go terms to be enriched
d. top: is an optional parameter for picking up the top number of enrichment result (e.g. top 5 or top 10), by default is none.
create an instance for enrichment class, then call the function. Example of how to use this class:
tool = enrichment.Enrichment(host, username, password, "assocdb", inputfile, outputfile_path, 0.01)
tool.enrich_csv(top = none)
(2) ######merge######
Parameters:
a. weightGographData: a xml file which represents Gene Ontology structure, for example “weightedGoGraph.xml"
b. genelist: a csv file contains a genelist (Each input cvs file must contain only one genelist, which means it only has one row!!)
c. output: output_directory
d. p_value: minimum p-value required for go terms to be enriched
e. subGenelistNo: minimum number of genes required for go terms to be enriched
#Create a GoGraph object (Note: every time you use the gotermSummarization(), you need to create a new object)
gograph = merge.GoGraph(weightGographData, genelist, output, p_value, subGenelistNo, host, username, password, "assocdb")
gograph.gotermSummarization()
Result is in the output directory
%prep
%autosetup -n GoTermAnalysis-0.2.6
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-GoTermAnalysis -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.6-1
- Package Spec generated
|