summaryrefslogtreecommitdiff
path: root/python-kami.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-kami.spec')
-rw-r--r--python-kami.spec186
1 files changed, 186 insertions, 0 deletions
diff --git a/python-kami.spec b/python-kami.spec
new file mode 100644
index 0000000..14367a5
--- /dev/null
+++ b/python-kami.spec
@@ -0,0 +1,186 @@
+%global _empty_manifest_terminate_build 0
+Name: python-Kami
+Version: 0.4.3
+Release: 1
+Summary: Forecast sales with Entity Embedding LSTM
+License: MIT
+URL: https://github.com/MacarielAerial
+Source0: https://mirrors.aliyun.com/pypi/web/packages/9d/3b/be3a4187ada38578703bd07e6f2cd69f42598a4885a89d44d56f6d902804/Kami-0.4.3.tar.gz
+BuildArch: noarch
+
+
+%description
+# AM18_SPR20_LondonLAB
+
+## Package Description
+
+The package contains one object **Kami** with four methods in the order of execution:
+1. **Preprocess()**
+2. **Analyse(n_sample)**
+3. **Vis()**
+4. **Forecast(store_list, product_list, start, end)**
+
+To initiate the object **Kami**, the user is required to supply at least these three arguments:
+1. Path to the grouped product sales input data (***input_f_path***)
+2. Path to an intermediary folder to store intermediary data (***cache_dir_path***)
+3. Path to an output folder to store final predictions (***output_dir_path***)
+
+While **Preprocess** and **Vis** methods are executed without any argument, **Analyse** method can be supplied with an optional argument *n_sample* which is the number of random samples drawn from the predefined training data.
+
+**Forecast** method is required to be supplied with four arguments including:
+1. A list of stores whose sales are predicted (***store_list***)
+2. A list of products whose sales are predicted (***product_list***)
+3. The start date of the forecast (***start***)
+4. The end date of the forecast (***end***)
+
+## Typical Use Case
+
+***
+ from Kami import Kami
+
+ obj = Kami(input_f_path = 'PATH_TO_SALES_DATA/SALES_DATA.csv',
+ output_dir_path = 'OUTPUT_FOLDER/',
+ cache_dir_path = 'CACHE_FOLDER/')
+ obj.Preprocess()
+ obj.Analyse()
+ obj.Vis()
+ obj.Forecast(store_list = ['STORE_A', 'STORE_B'],
+ product_list = ['PRODUCT_A', 'PRODUCT_B'],
+ start = 'MM/DD/YYYY',
+ end = 'MM/DD/YYYY')
+***
+
+%package -n python3-Kami
+Summary: Forecast sales with Entity Embedding LSTM
+Provides: python-Kami
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-Kami
+# AM18_SPR20_LondonLAB
+
+## Package Description
+
+The package contains one object **Kami** with four methods in the order of execution:
+1. **Preprocess()**
+2. **Analyse(n_sample)**
+3. **Vis()**
+4. **Forecast(store_list, product_list, start, end)**
+
+To initiate the object **Kami**, the user is required to supply at least these three arguments:
+1. Path to the grouped product sales input data (***input_f_path***)
+2. Path to an intermediary folder to store intermediary data (***cache_dir_path***)
+3. Path to an output folder to store final predictions (***output_dir_path***)
+
+While **Preprocess** and **Vis** methods are executed without any argument, **Analyse** method can be supplied with an optional argument *n_sample* which is the number of random samples drawn from the predefined training data.
+
+**Forecast** method is required to be supplied with four arguments including:
+1. A list of stores whose sales are predicted (***store_list***)
+2. A list of products whose sales are predicted (***product_list***)
+3. The start date of the forecast (***start***)
+4. The end date of the forecast (***end***)
+
+## Typical Use Case
+
+***
+ from Kami import Kami
+
+ obj = Kami(input_f_path = 'PATH_TO_SALES_DATA/SALES_DATA.csv',
+ output_dir_path = 'OUTPUT_FOLDER/',
+ cache_dir_path = 'CACHE_FOLDER/')
+ obj.Preprocess()
+ obj.Analyse()
+ obj.Vis()
+ obj.Forecast(store_list = ['STORE_A', 'STORE_B'],
+ product_list = ['PRODUCT_A', 'PRODUCT_B'],
+ start = 'MM/DD/YYYY',
+ end = 'MM/DD/YYYY')
+***
+
+%package help
+Summary: Development documents and examples for Kami
+Provides: python3-Kami-doc
+%description help
+# AM18_SPR20_LondonLAB
+
+## Package Description
+
+The package contains one object **Kami** with four methods in the order of execution:
+1. **Preprocess()**
+2. **Analyse(n_sample)**
+3. **Vis()**
+4. **Forecast(store_list, product_list, start, end)**
+
+To initiate the object **Kami**, the user is required to supply at least these three arguments:
+1. Path to the grouped product sales input data (***input_f_path***)
+2. Path to an intermediary folder to store intermediary data (***cache_dir_path***)
+3. Path to an output folder to store final predictions (***output_dir_path***)
+
+While **Preprocess** and **Vis** methods are executed without any argument, **Analyse** method can be supplied with an optional argument *n_sample* which is the number of random samples drawn from the predefined training data.
+
+**Forecast** method is required to be supplied with four arguments including:
+1. A list of stores whose sales are predicted (***store_list***)
+2. A list of products whose sales are predicted (***product_list***)
+3. The start date of the forecast (***start***)
+4. The end date of the forecast (***end***)
+
+## Typical Use Case
+
+***
+ from Kami import Kami
+
+ obj = Kami(input_f_path = 'PATH_TO_SALES_DATA/SALES_DATA.csv',
+ output_dir_path = 'OUTPUT_FOLDER/',
+ cache_dir_path = 'CACHE_FOLDER/')
+ obj.Preprocess()
+ obj.Analyse()
+ obj.Vis()
+ obj.Forecast(store_list = ['STORE_A', 'STORE_B'],
+ product_list = ['PRODUCT_A', 'PRODUCT_B'],
+ start = 'MM/DD/YYYY',
+ end = 'MM/DD/YYYY')
+***
+
+%prep
+%autosetup -n Kami-0.4.3
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-Kami -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.3-1
+- Package Spec generated