summaryrefslogtreecommitdiff
path: root/python-swissarmytransformer.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-swissarmytransformer.spec')
-rw-r--r--python-swissarmytransformer.spec614
1 files changed, 614 insertions, 0 deletions
diff --git a/python-swissarmytransformer.spec b/python-swissarmytransformer.spec
new file mode 100644
index 0000000..83bee4b
--- /dev/null
+++ b/python-swissarmytransformer.spec
@@ -0,0 +1,614 @@
+%global _empty_manifest_terminate_build 0
+Name: python-SwissArmyTransformer
+Version: 0.3.7
+Release: 1
+Summary: A transformer-based framework with finetuning as the first class citizen.
+License: Apache 2.0 license
+URL: https://github.com/THUDM/SwissArmyTransformer
+Source0: https://mirrors.aliyun.com/pypi/web/packages/56/7c/1490e7e70eb601e30e9fecfbd64ee56cffb9905f2109ade6534c00640f87/SwissArmyTransformer-0.3.7.tar.gz
+BuildArch: noarch
+
+Requires: python3-torch
+Requires: python3-deepspeed
+Requires: python3-sentencepiece
+Requires: python3-tensorboardX
+Requires: python3-datasets
+Requires: python3-transformers
+Requires: python3-cpm-kernels
+Requires: python3-einops
+
+%description
+# Introduction
+`sat`(`SwissArmyTransformer`) is a flexible and powerful library to develop your own Transformer variants.
+
+`sat` is named after "swiss army knife", meaning that all the models (e.g. BERT, GPT, T5, GLM, CogView, ViT...) **share the same backone code** and cater for versatile usages with some extra light-weight mixins.
+
+`sat` is powered by `deepspeed-ZeRO` and model parallelism, aiming to provide the best practice for pretraining and finetuning large models (100M\~20B parameters).
+
+# Migrate from SwissArmyTransformer 0.2.x to 0.3.x
+0. change the package name from `SwissArmyTransformer` to `sat` when importing, e.g. `from sat import get_args`.
+1. delete all `--sandwich-ln` in you script, use `layernorm-order='sandwich'`.
+2. change order `from_pretrained(args, name) => from_pretrained(name, args)`.
+4. We can directly use `from sat.model import AutoModel;model, args = AutoModel.from_pretrained('roberta-base')` to load model in `model-only` mode, instead of initializing the sat first.
+
+## Install
+```
+ pip install SwissArmyTransformer
+```
+# Features
+
+* **Add model-agnostic components**, e.g. prefix-tuning, in just *ONE* line!
+
+ - [Prefix-tuning](https://arxiv.org/pdf/2101.00190) (or [P-tuning](https://arxiv.org/abs/2103.10385)) improves finetuning via adding trainable parameters in each attention layer. To apply it to a [GLM](https://arxiv.org/pdf/2103.10360.pdf) classification (or any other) model is easy with our library.
+
+ ```python
+ class ClassificationModel(GLMModel): # can also be BertModel, RobertaModel, etc.
+ def __init__(self, args, transformer=None, **kwargs):
+ super().__init__(args, transformer=transformer, **kwargs)
+ self.add_mixin('classification_head', MLPHeadMixin(args.hidden_size, 2048, 1))
+ # Arm an arbitrary model with Prefix-tuning with this line!
+ self.add_mixin('prefix-tuning', PrefixTuningMixin(args.num_layers, args.hidden_size // args.num_attention_heads, args.num_attention_heads, args.prefix_len))
+ ```
+
+ - GPT and other auto-regressive models act differently during training and inference. During inference, text is generated token-by-token and we need to cache previous states for efficiency. With our lib, you only need to consider the behavior during training (teacher-forcing) and transform it to a cached auto-regressive model via adding a mixin:
+
+ ```python
+ model, args = AutoModel.from_pretrained('glm-10b-chinese', args)
+ model.add_mixin('auto-regressive', CachedAutoregressiveMixin())
+ # Generate a sequence with beam search
+ from sat.generation.autoregressive_sampling import filling_sequence
+ from sat.generation.sampling_strategies import BeamSearchStrategy
+ output, *mems = filling_sequence(model, input_seq,
+ batch_size=args.batch_size,
+ strategy=BeamSearchStrategy(args.batch_size))
+ ```
+
+
+* **Build your Transformer-based model with minimal codes**. We mentioned [GLM](https://arxiv.org/pdf/2103.10360.pdf), which only differs from standard transformer (called BaseModel) on position embedding (and training losses). We only need to focus on the related part when coding.
+
+ <details><summary>Extend the whole definition: </summary><p>
+
+ ```python
+ class BlockPositionEmbeddingMixin(BaseMixin):
+ # Here define parameters for the mixin
+ def __init__(self, max_sequence_length, hidden_size, init_method_std=0.02):
+ super(BlockPositionEmbeddingMixin, self).__init__()
+ self.max_sequence_length = max_sequence_length
+ self.hidden_size = hidden_size
+ self.block_position_embeddings = torch.nn.Embedding(max_sequence_length, hidden_size)
+ torch.nn.init.normal_(self.block_position_embeddings.weight, mean=0.0, std=init_method_std)
+
+ # Here define the method for the mixin
+ def position_embedding_forward(self, position_ids, **kwargs):
+ position_ids, block_position_ids = position_ids[:, 0], position_ids[:, 1]
+ position_embeddings = self.transformer.position_embeddings(position_ids)
+ block_position_embeddings = self.block_position_embeddings(block_position_ids)
+ return position_embeddings + block_position_embeddings
+
+ class GLMModel(BaseModel):
+ def __init__(self, args, transformer=None, parallel_output=True):
+ super().__init__(args, transformer=transformer, parallel_output=parallel_output)
+ self.add_mixin('block_position_embedding',
+ BlockPositionEmbeddingMixin(args.max_sequence_length, args.hidden_size)
+ ) # Add the mixin for GLM
+ ```
+
+* **Comprehensive supports for training**. `sat` aims to provide the best practice for pretraining and finetuning, where you only need to finish `forward_step` and `create_dataset_function` but with hyperparameters to alter useful training configurations.
+ - Extend the training to multiple GPUs or nodes by specifying `--num_nodes`, `--num_gpus` and a simple `hostfile`.
+ - DeepSpeed and Model parallelism.
+ - Better integration of ZeRO-2 and activation checkpointing.
+ - Automatic extending and shuffling training data and `memmap`.
+ - Successfully support the training of [CogView2](http://github.com/THUDM/CogView2) and [CogVideo](https://github.com/THUDM/cogvideo).
+ - The only open-source codebase supporting finetuning [T5-10B](https://arxiv.org/abs/1910.10683) on GPUs currently.
+
+</p></details>
+
+
+# Quick Tour
+
+The most typical python file to use `Bert` in sat (for inference) is as follows:
+```python
+# @File: inference_bert.py
+from sat import get_args, get_tokenizer, AutoModel
+# Parse args, initialize the environment. This is necessary.
+args = get_args()
+# Automatically download and load model. Will also dump model-related hyperparameters to args.
+model, args = AutoModel.from_pretrained('bert-base-uncased', args)
+# Get the BertTokenizer according to args.tokenizer_type (automatically set).
+tokenizer = get_tokenizer(args)
+# Here to use bert as you want!
+# ...
+```
+Then we can run the code via
+```bash
+ SAT_HOME=/path/to/download python inference_bert.py --mode inference
+```
+All officially supported model names are in [urls.py](sat/resources/urls.py).
+
+To finetune or pretrain a transformer is also extremely easy!
+```python
+# @File: finetune_bert.py
+from sat import get_args, get_tokenizer, AutoModel
+from sat.model.mixins import MLPHeadMixin
+
+def create_dataset_function(path, args):
+ # Here to load the dataset
+ # ...
+ assert isinstance(dataset, torch.utils.data.Dataset)
+ return dataset
+
+def forward_step(data_iterator, model, args, timers):
+ inputs = next(data_iterator) # from the dataset of create_dataset_function.
+ loss, *others = model(inputs)
+ return loss
+
+# Parse args, initialize the environment. This is necessary.
+args = get_args()
+model, args = AutoModel.from_pretrained('bert-base-uncased', args)
+tokenizer = get_tokenizer(args)
+# Here to use bert as you want!
+model.del_mixin('bert-final')
+model.add_mixin('classification_head', MLPHeadMixin(args.hidden_size, 2048, 1))
+# ONE LINE to train!
+# args already includes hyperparams such as lr, train-iters, zero-stage ...
+training_main(args,
+ model_cls=model,
+ forward_step_function=forward_step, # user define
+ create_dataset_function=create_dataset_function # user define
+)
+```
+Then we can run the code via
+```shell
+deepspeed --include localhost:0,1 finetune_bert.py \
+ --experiment-name ftbert \
+ --mode finetune --train-iters 1000 --save /path/to/save \
+ --train-data /path/to/train --valid-data /path/to/valid \
+ --lr 0.00002 --batch-size 8 --zero-stage 1 --fp16
+```
+Here we use data-parallel on GPUs 0,1. We can also launch the training on many inter-connected machines via `--hostfile /path/to/hostfile`. See the tutorial for more details.
+
+To write your own model, you only need to consider the difference between the standard Transformer. For example, if you have a idea to improve the attention operation:
+```python
+from sat.model import BaseMixin
+class MyAttention(BaseMixin):
+ def __init__(self, hidden_size):
+ super(MyAttention, self).__init__()
+ # MyAttention may needs some new params, e.g. a learnable alpha.
+ self.learnable_alpha = torch.nn.Parameter(torch.ones(hidden_size))
+
+ # This is a hook function, the name `attention_fn` is special.
+ def attention_fn(q, k, v, mask, dropout=None, **kwargs):
+ # Code for my attention.
+ # ...
+ return attention_results
+```
+Here `attention_fn` is a hook function, replacing the default action by the new function. All available hooks are in [transformer_defaults.py](/sat/transformer_defaults.py).
+Now we can use `add_mixin` to apply our change to all the transformers, such as BERT, Vit and CogView. See the tutorial for more details.
+
+## Tutorials
+TO BE RELEASED SOON...
+
+# Citation
+Currently we don't have a paper, so you don't need to formally cite us!~
+
+If this project helps your research or engineering, use `\footnote{https://github.com/THUDM/SwissArmyTransformer}` to mention us and recommend `SwissArmyTransformer` to others.
+
+The tutorial for contributing sat is on the way!
+
+The project is based on (a user of) DeepSpeed, Megatron-LM and Huggingface transformers. Thanks for their awesome work.
+
+
+%package -n python3-SwissArmyTransformer
+Summary: A transformer-based framework with finetuning as the first class citizen.
+Provides: python-SwissArmyTransformer
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-SwissArmyTransformer
+# Introduction
+`sat`(`SwissArmyTransformer`) is a flexible and powerful library to develop your own Transformer variants.
+
+`sat` is named after "swiss army knife", meaning that all the models (e.g. BERT, GPT, T5, GLM, CogView, ViT...) **share the same backone code** and cater for versatile usages with some extra light-weight mixins.
+
+`sat` is powered by `deepspeed-ZeRO` and model parallelism, aiming to provide the best practice for pretraining and finetuning large models (100M\~20B parameters).
+
+# Migrate from SwissArmyTransformer 0.2.x to 0.3.x
+0. change the package name from `SwissArmyTransformer` to `sat` when importing, e.g. `from sat import get_args`.
+1. delete all `--sandwich-ln` in you script, use `layernorm-order='sandwich'`.
+2. change order `from_pretrained(args, name) => from_pretrained(name, args)`.
+4. We can directly use `from sat.model import AutoModel;model, args = AutoModel.from_pretrained('roberta-base')` to load model in `model-only` mode, instead of initializing the sat first.
+
+## Install
+```
+ pip install SwissArmyTransformer
+```
+# Features
+
+* **Add model-agnostic components**, e.g. prefix-tuning, in just *ONE* line!
+
+ - [Prefix-tuning](https://arxiv.org/pdf/2101.00190) (or [P-tuning](https://arxiv.org/abs/2103.10385)) improves finetuning via adding trainable parameters in each attention layer. To apply it to a [GLM](https://arxiv.org/pdf/2103.10360.pdf) classification (or any other) model is easy with our library.
+
+ ```python
+ class ClassificationModel(GLMModel): # can also be BertModel, RobertaModel, etc.
+ def __init__(self, args, transformer=None, **kwargs):
+ super().__init__(args, transformer=transformer, **kwargs)
+ self.add_mixin('classification_head', MLPHeadMixin(args.hidden_size, 2048, 1))
+ # Arm an arbitrary model with Prefix-tuning with this line!
+ self.add_mixin('prefix-tuning', PrefixTuningMixin(args.num_layers, args.hidden_size // args.num_attention_heads, args.num_attention_heads, args.prefix_len))
+ ```
+
+ - GPT and other auto-regressive models act differently during training and inference. During inference, text is generated token-by-token and we need to cache previous states for efficiency. With our lib, you only need to consider the behavior during training (teacher-forcing) and transform it to a cached auto-regressive model via adding a mixin:
+
+ ```python
+ model, args = AutoModel.from_pretrained('glm-10b-chinese', args)
+ model.add_mixin('auto-regressive', CachedAutoregressiveMixin())
+ # Generate a sequence with beam search
+ from sat.generation.autoregressive_sampling import filling_sequence
+ from sat.generation.sampling_strategies import BeamSearchStrategy
+ output, *mems = filling_sequence(model, input_seq,
+ batch_size=args.batch_size,
+ strategy=BeamSearchStrategy(args.batch_size))
+ ```
+
+
+* **Build your Transformer-based model with minimal codes**. We mentioned [GLM](https://arxiv.org/pdf/2103.10360.pdf), which only differs from standard transformer (called BaseModel) on position embedding (and training losses). We only need to focus on the related part when coding.
+
+ <details><summary>Extend the whole definition: </summary><p>
+
+ ```python
+ class BlockPositionEmbeddingMixin(BaseMixin):
+ # Here define parameters for the mixin
+ def __init__(self, max_sequence_length, hidden_size, init_method_std=0.02):
+ super(BlockPositionEmbeddingMixin, self).__init__()
+ self.max_sequence_length = max_sequence_length
+ self.hidden_size = hidden_size
+ self.block_position_embeddings = torch.nn.Embedding(max_sequence_length, hidden_size)
+ torch.nn.init.normal_(self.block_position_embeddings.weight, mean=0.0, std=init_method_std)
+
+ # Here define the method for the mixin
+ def position_embedding_forward(self, position_ids, **kwargs):
+ position_ids, block_position_ids = position_ids[:, 0], position_ids[:, 1]
+ position_embeddings = self.transformer.position_embeddings(position_ids)
+ block_position_embeddings = self.block_position_embeddings(block_position_ids)
+ return position_embeddings + block_position_embeddings
+
+ class GLMModel(BaseModel):
+ def __init__(self, args, transformer=None, parallel_output=True):
+ super().__init__(args, transformer=transformer, parallel_output=parallel_output)
+ self.add_mixin('block_position_embedding',
+ BlockPositionEmbeddingMixin(args.max_sequence_length, args.hidden_size)
+ ) # Add the mixin for GLM
+ ```
+
+* **Comprehensive supports for training**. `sat` aims to provide the best practice for pretraining and finetuning, where you only need to finish `forward_step` and `create_dataset_function` but with hyperparameters to alter useful training configurations.
+ - Extend the training to multiple GPUs or nodes by specifying `--num_nodes`, `--num_gpus` and a simple `hostfile`.
+ - DeepSpeed and Model parallelism.
+ - Better integration of ZeRO-2 and activation checkpointing.
+ - Automatic extending and shuffling training data and `memmap`.
+ - Successfully support the training of [CogView2](http://github.com/THUDM/CogView2) and [CogVideo](https://github.com/THUDM/cogvideo).
+ - The only open-source codebase supporting finetuning [T5-10B](https://arxiv.org/abs/1910.10683) on GPUs currently.
+
+</p></details>
+
+
+# Quick Tour
+
+The most typical python file to use `Bert` in sat (for inference) is as follows:
+```python
+# @File: inference_bert.py
+from sat import get_args, get_tokenizer, AutoModel
+# Parse args, initialize the environment. This is necessary.
+args = get_args()
+# Automatically download and load model. Will also dump model-related hyperparameters to args.
+model, args = AutoModel.from_pretrained('bert-base-uncased', args)
+# Get the BertTokenizer according to args.tokenizer_type (automatically set).
+tokenizer = get_tokenizer(args)
+# Here to use bert as you want!
+# ...
+```
+Then we can run the code via
+```bash
+ SAT_HOME=/path/to/download python inference_bert.py --mode inference
+```
+All officially supported model names are in [urls.py](sat/resources/urls.py).
+
+To finetune or pretrain a transformer is also extremely easy!
+```python
+# @File: finetune_bert.py
+from sat import get_args, get_tokenizer, AutoModel
+from sat.model.mixins import MLPHeadMixin
+
+def create_dataset_function(path, args):
+ # Here to load the dataset
+ # ...
+ assert isinstance(dataset, torch.utils.data.Dataset)
+ return dataset
+
+def forward_step(data_iterator, model, args, timers):
+ inputs = next(data_iterator) # from the dataset of create_dataset_function.
+ loss, *others = model(inputs)
+ return loss
+
+# Parse args, initialize the environment. This is necessary.
+args = get_args()
+model, args = AutoModel.from_pretrained('bert-base-uncased', args)
+tokenizer = get_tokenizer(args)
+# Here to use bert as you want!
+model.del_mixin('bert-final')
+model.add_mixin('classification_head', MLPHeadMixin(args.hidden_size, 2048, 1))
+# ONE LINE to train!
+# args already includes hyperparams such as lr, train-iters, zero-stage ...
+training_main(args,
+ model_cls=model,
+ forward_step_function=forward_step, # user define
+ create_dataset_function=create_dataset_function # user define
+)
+```
+Then we can run the code via
+```shell
+deepspeed --include localhost:0,1 finetune_bert.py \
+ --experiment-name ftbert \
+ --mode finetune --train-iters 1000 --save /path/to/save \
+ --train-data /path/to/train --valid-data /path/to/valid \
+ --lr 0.00002 --batch-size 8 --zero-stage 1 --fp16
+```
+Here we use data-parallel on GPUs 0,1. We can also launch the training on many inter-connected machines via `--hostfile /path/to/hostfile`. See the tutorial for more details.
+
+To write your own model, you only need to consider the difference between the standard Transformer. For example, if you have a idea to improve the attention operation:
+```python
+from sat.model import BaseMixin
+class MyAttention(BaseMixin):
+ def __init__(self, hidden_size):
+ super(MyAttention, self).__init__()
+ # MyAttention may needs some new params, e.g. a learnable alpha.
+ self.learnable_alpha = torch.nn.Parameter(torch.ones(hidden_size))
+
+ # This is a hook function, the name `attention_fn` is special.
+ def attention_fn(q, k, v, mask, dropout=None, **kwargs):
+ # Code for my attention.
+ # ...
+ return attention_results
+```
+Here `attention_fn` is a hook function, replacing the default action by the new function. All available hooks are in [transformer_defaults.py](/sat/transformer_defaults.py).
+Now we can use `add_mixin` to apply our change to all the transformers, such as BERT, Vit and CogView. See the tutorial for more details.
+
+## Tutorials
+TO BE RELEASED SOON...
+
+# Citation
+Currently we don't have a paper, so you don't need to formally cite us!~
+
+If this project helps your research or engineering, use `\footnote{https://github.com/THUDM/SwissArmyTransformer}` to mention us and recommend `SwissArmyTransformer` to others.
+
+The tutorial for contributing sat is on the way!
+
+The project is based on (a user of) DeepSpeed, Megatron-LM and Huggingface transformers. Thanks for their awesome work.
+
+
+%package help
+Summary: Development documents and examples for SwissArmyTransformer
+Provides: python3-SwissArmyTransformer-doc
+%description help
+# Introduction
+`sat`(`SwissArmyTransformer`) is a flexible and powerful library to develop your own Transformer variants.
+
+`sat` is named after "swiss army knife", meaning that all the models (e.g. BERT, GPT, T5, GLM, CogView, ViT...) **share the same backone code** and cater for versatile usages with some extra light-weight mixins.
+
+`sat` is powered by `deepspeed-ZeRO` and model parallelism, aiming to provide the best practice for pretraining and finetuning large models (100M\~20B parameters).
+
+# Migrate from SwissArmyTransformer 0.2.x to 0.3.x
+0. change the package name from `SwissArmyTransformer` to `sat` when importing, e.g. `from sat import get_args`.
+1. delete all `--sandwich-ln` in you script, use `layernorm-order='sandwich'`.
+2. change order `from_pretrained(args, name) => from_pretrained(name, args)`.
+4. We can directly use `from sat.model import AutoModel;model, args = AutoModel.from_pretrained('roberta-base')` to load model in `model-only` mode, instead of initializing the sat first.
+
+## Install
+```
+ pip install SwissArmyTransformer
+```
+# Features
+
+* **Add model-agnostic components**, e.g. prefix-tuning, in just *ONE* line!
+
+ - [Prefix-tuning](https://arxiv.org/pdf/2101.00190) (or [P-tuning](https://arxiv.org/abs/2103.10385)) improves finetuning via adding trainable parameters in each attention layer. To apply it to a [GLM](https://arxiv.org/pdf/2103.10360.pdf) classification (or any other) model is easy with our library.
+
+ ```python
+ class ClassificationModel(GLMModel): # can also be BertModel, RobertaModel, etc.
+ def __init__(self, args, transformer=None, **kwargs):
+ super().__init__(args, transformer=transformer, **kwargs)
+ self.add_mixin('classification_head', MLPHeadMixin(args.hidden_size, 2048, 1))
+ # Arm an arbitrary model with Prefix-tuning with this line!
+ self.add_mixin('prefix-tuning', PrefixTuningMixin(args.num_layers, args.hidden_size // args.num_attention_heads, args.num_attention_heads, args.prefix_len))
+ ```
+
+ - GPT and other auto-regressive models act differently during training and inference. During inference, text is generated token-by-token and we need to cache previous states for efficiency. With our lib, you only need to consider the behavior during training (teacher-forcing) and transform it to a cached auto-regressive model via adding a mixin:
+
+ ```python
+ model, args = AutoModel.from_pretrained('glm-10b-chinese', args)
+ model.add_mixin('auto-regressive', CachedAutoregressiveMixin())
+ # Generate a sequence with beam search
+ from sat.generation.autoregressive_sampling import filling_sequence
+ from sat.generation.sampling_strategies import BeamSearchStrategy
+ output, *mems = filling_sequence(model, input_seq,
+ batch_size=args.batch_size,
+ strategy=BeamSearchStrategy(args.batch_size))
+ ```
+
+
+* **Build your Transformer-based model with minimal codes**. We mentioned [GLM](https://arxiv.org/pdf/2103.10360.pdf), which only differs from standard transformer (called BaseModel) on position embedding (and training losses). We only need to focus on the related part when coding.
+
+ <details><summary>Extend the whole definition: </summary><p>
+
+ ```python
+ class BlockPositionEmbeddingMixin(BaseMixin):
+ # Here define parameters for the mixin
+ def __init__(self, max_sequence_length, hidden_size, init_method_std=0.02):
+ super(BlockPositionEmbeddingMixin, self).__init__()
+ self.max_sequence_length = max_sequence_length
+ self.hidden_size = hidden_size
+ self.block_position_embeddings = torch.nn.Embedding(max_sequence_length, hidden_size)
+ torch.nn.init.normal_(self.block_position_embeddings.weight, mean=0.0, std=init_method_std)
+
+ # Here define the method for the mixin
+ def position_embedding_forward(self, position_ids, **kwargs):
+ position_ids, block_position_ids = position_ids[:, 0], position_ids[:, 1]
+ position_embeddings = self.transformer.position_embeddings(position_ids)
+ block_position_embeddings = self.block_position_embeddings(block_position_ids)
+ return position_embeddings + block_position_embeddings
+
+ class GLMModel(BaseModel):
+ def __init__(self, args, transformer=None, parallel_output=True):
+ super().__init__(args, transformer=transformer, parallel_output=parallel_output)
+ self.add_mixin('block_position_embedding',
+ BlockPositionEmbeddingMixin(args.max_sequence_length, args.hidden_size)
+ ) # Add the mixin for GLM
+ ```
+
+* **Comprehensive supports for training**. `sat` aims to provide the best practice for pretraining and finetuning, where you only need to finish `forward_step` and `create_dataset_function` but with hyperparameters to alter useful training configurations.
+ - Extend the training to multiple GPUs or nodes by specifying `--num_nodes`, `--num_gpus` and a simple `hostfile`.
+ - DeepSpeed and Model parallelism.
+ - Better integration of ZeRO-2 and activation checkpointing.
+ - Automatic extending and shuffling training data and `memmap`.
+ - Successfully support the training of [CogView2](http://github.com/THUDM/CogView2) and [CogVideo](https://github.com/THUDM/cogvideo).
+ - The only open-source codebase supporting finetuning [T5-10B](https://arxiv.org/abs/1910.10683) on GPUs currently.
+
+</p></details>
+
+
+# Quick Tour
+
+The most typical python file to use `Bert` in sat (for inference) is as follows:
+```python
+# @File: inference_bert.py
+from sat import get_args, get_tokenizer, AutoModel
+# Parse args, initialize the environment. This is necessary.
+args = get_args()
+# Automatically download and load model. Will also dump model-related hyperparameters to args.
+model, args = AutoModel.from_pretrained('bert-base-uncased', args)
+# Get the BertTokenizer according to args.tokenizer_type (automatically set).
+tokenizer = get_tokenizer(args)
+# Here to use bert as you want!
+# ...
+```
+Then we can run the code via
+```bash
+ SAT_HOME=/path/to/download python inference_bert.py --mode inference
+```
+All officially supported model names are in [urls.py](sat/resources/urls.py).
+
+To finetune or pretrain a transformer is also extremely easy!
+```python
+# @File: finetune_bert.py
+from sat import get_args, get_tokenizer, AutoModel
+from sat.model.mixins import MLPHeadMixin
+
+def create_dataset_function(path, args):
+ # Here to load the dataset
+ # ...
+ assert isinstance(dataset, torch.utils.data.Dataset)
+ return dataset
+
+def forward_step(data_iterator, model, args, timers):
+ inputs = next(data_iterator) # from the dataset of create_dataset_function.
+ loss, *others = model(inputs)
+ return loss
+
+# Parse args, initialize the environment. This is necessary.
+args = get_args()
+model, args = AutoModel.from_pretrained('bert-base-uncased', args)
+tokenizer = get_tokenizer(args)
+# Here to use bert as you want!
+model.del_mixin('bert-final')
+model.add_mixin('classification_head', MLPHeadMixin(args.hidden_size, 2048, 1))
+# ONE LINE to train!
+# args already includes hyperparams such as lr, train-iters, zero-stage ...
+training_main(args,
+ model_cls=model,
+ forward_step_function=forward_step, # user define
+ create_dataset_function=create_dataset_function # user define
+)
+```
+Then we can run the code via
+```shell
+deepspeed --include localhost:0,1 finetune_bert.py \
+ --experiment-name ftbert \
+ --mode finetune --train-iters 1000 --save /path/to/save \
+ --train-data /path/to/train --valid-data /path/to/valid \
+ --lr 0.00002 --batch-size 8 --zero-stage 1 --fp16
+```
+Here we use data-parallel on GPUs 0,1. We can also launch the training on many inter-connected machines via `--hostfile /path/to/hostfile`. See the tutorial for more details.
+
+To write your own model, you only need to consider the difference between the standard Transformer. For example, if you have a idea to improve the attention operation:
+```python
+from sat.model import BaseMixin
+class MyAttention(BaseMixin):
+ def __init__(self, hidden_size):
+ super(MyAttention, self).__init__()
+ # MyAttention may needs some new params, e.g. a learnable alpha.
+ self.learnable_alpha = torch.nn.Parameter(torch.ones(hidden_size))
+
+ # This is a hook function, the name `attention_fn` is special.
+ def attention_fn(q, k, v, mask, dropout=None, **kwargs):
+ # Code for my attention.
+ # ...
+ return attention_results
+```
+Here `attention_fn` is a hook function, replacing the default action by the new function. All available hooks are in [transformer_defaults.py](/sat/transformer_defaults.py).
+Now we can use `add_mixin` to apply our change to all the transformers, such as BERT, Vit and CogView. See the tutorial for more details.
+
+## Tutorials
+TO BE RELEASED SOON...
+
+# Citation
+Currently we don't have a paper, so you don't need to formally cite us!~
+
+If this project helps your research or engineering, use `\footnote{https://github.com/THUDM/SwissArmyTransformer}` to mention us and recommend `SwissArmyTransformer` to others.
+
+The tutorial for contributing sat is on the way!
+
+The project is based on (a user of) DeepSpeed, Megatron-LM and Huggingface transformers. Thanks for their awesome work.
+
+
+%prep
+%autosetup -n SwissArmyTransformer-0.3.7
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-SwissArmyTransformer -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.7-1
+- Package Spec generated