summaryrefslogtreecommitdiff
path: root/python-abdothebest.spec
blob: 8126cbeb66e12fedd4dbb19a2df3745e42ab067a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
%global _empty_manifest_terminate_build 0
Name:		python-abdoTheBest
Version:	1.0.0
Release:	1
Summary:	A small example package
License:	MIT
URL:		https://github.com/gituser/example-pkg
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/55/f3/d948dfe7af193ea36a74b27f94c2c6d0490a6573a833982e13f3c207df03/abdoTheBest-1.0.0.tar.gz
BuildArch:	noarch


%description

# GeNN
[![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/FahedSabellioglu/genn/blob/master/LICENSE.txt)

GeNN (generative neural networks) is a high-level interface for text applications using PyTorch RNN's.


## Features

1.  Preprocessing: 
	- Parsing txt, json, and csv files.
	- NLTK, regex and spacy tokenization support.
	- GloVe and fastText pretrained embeddings, with the ability to fine-tune for your data.
2. Architectures and customization:
	- GPT2 with small, medium, and large variants.
	- LSTM and GRU, with variable size.
	- Variable number of layers and batches.
	- Dropout.
3. Text generation:
	- Random seed sampling from the n first tokens in all instances, or the most frequent token.
	- Top-K sampling for next token prediction with variable K.
	- Nucleus sampling for next token prediction with variable probability threshold.
4. Text Summarization:
	- All GPT2 variants can be trained to perform text summarization.

## Getting started

### How to install
```bash
pip install genn
```
### Prerequisites
* PyTorch 1.4.0
```bash
pip install torch==1.4.0
```
* Pytorch Transformers
```bash
pip install pytorch_transformers
```
* NumPy
```bash
pip install numpy
```
* fastText
```bash
pip install fasttext
```
Use the package manager [pip](https://pypi.org/project/genn) to install genn.

## Usage
### Text Generation:
##### RNNs (You can switch LSTMGenerator with GRUGenerator:
```python
from genn import Preprocessing, LSTMGenerator, GRUGenerator
#LSTM example
ds = Preprocessing("data.txt")
gen = LSTMGenerator(ds, nLayers = 2,
                        batchSize = 16,
                        embSize = 64,
                        lstmSize = 16,
                        epochs = 20)
			
#Train the model
gen.run()

# Generate 5 new documents
print(gen.generate_document(5))
```
##### GPT2 Generator:
```python
#GPT2 example
gen = GPT2("data.txt",
 	    taskToken = "Movie:",
	    epochs = 7,
	    variant = "medium")
#Train the model
gen.run()

#Generate 10 new documents
print(gen.generate_document(10))
```
### Text Summarization:
##### GPT2 Summarizer:
```python
#GPT2 Summarizer example
from genn import GPT2Summarizer
summ = GPT2Summarizer("data.txt",
					epochs=3,
					batch_size=8)

#Train the model
summ.run()

#Create 5 summaries of a source document
src_doc = "This is the source document to summarize"
print(summ.summarize_document(n=5, setSeed = src_doc))
```



#### For more examples on how to use Preprocessing, please refer to [this file](https://github.com/FahedSabellioglu/genn/blob/master/preprocessing_examples.md).
#### For more examples on how to use LSTMGenerator and GRUGenerator, please refer to [this file](https://github.com/FahedSabellioglu/genn/blob/master/generator_examples.md).
#### For more examples on how to use GPT2, please refer to [this file](https://github.com/FahedSabellioglu/genn/blob/master/gpt2_examples.md).
#### For more examples on how to use GPT2Summarizer, please refer to [this file](https://github.com/FahedSabellioglu/genn/blob/master/gpt2_summarizer_examples.md).
## Contributing
 Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
## License
Distributed under the MIT License. See [LICENSE](https://github.com/FahedSabellioglu/genn/blob/master/LICENSE.txt) for more information.




%package -n python3-abdoTheBest
Summary:	A small example package
Provides:	python-abdoTheBest
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-abdoTheBest

# GeNN
[![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/FahedSabellioglu/genn/blob/master/LICENSE.txt)

GeNN (generative neural networks) is a high-level interface for text applications using PyTorch RNN's.


## Features

1.  Preprocessing: 
	- Parsing txt, json, and csv files.
	- NLTK, regex and spacy tokenization support.
	- GloVe and fastText pretrained embeddings, with the ability to fine-tune for your data.
2. Architectures and customization:
	- GPT2 with small, medium, and large variants.
	- LSTM and GRU, with variable size.
	- Variable number of layers and batches.
	- Dropout.
3. Text generation:
	- Random seed sampling from the n first tokens in all instances, or the most frequent token.
	- Top-K sampling for next token prediction with variable K.
	- Nucleus sampling for next token prediction with variable probability threshold.
4. Text Summarization:
	- All GPT2 variants can be trained to perform text summarization.

## Getting started

### How to install
```bash
pip install genn
```
### Prerequisites
* PyTorch 1.4.0
```bash
pip install torch==1.4.0
```
* Pytorch Transformers
```bash
pip install pytorch_transformers
```
* NumPy
```bash
pip install numpy
```
* fastText
```bash
pip install fasttext
```
Use the package manager [pip](https://pypi.org/project/genn) to install genn.

## Usage
### Text Generation:
##### RNNs (You can switch LSTMGenerator with GRUGenerator:
```python
from genn import Preprocessing, LSTMGenerator, GRUGenerator
#LSTM example
ds = Preprocessing("data.txt")
gen = LSTMGenerator(ds, nLayers = 2,
                        batchSize = 16,
                        embSize = 64,
                        lstmSize = 16,
                        epochs = 20)
			
#Train the model
gen.run()

# Generate 5 new documents
print(gen.generate_document(5))
```
##### GPT2 Generator:
```python
#GPT2 example
gen = GPT2("data.txt",
 	    taskToken = "Movie:",
	    epochs = 7,
	    variant = "medium")
#Train the model
gen.run()

#Generate 10 new documents
print(gen.generate_document(10))
```
### Text Summarization:
##### GPT2 Summarizer:
```python
#GPT2 Summarizer example
from genn import GPT2Summarizer
summ = GPT2Summarizer("data.txt",
					epochs=3,
					batch_size=8)

#Train the model
summ.run()

#Create 5 summaries of a source document
src_doc = "This is the source document to summarize"
print(summ.summarize_document(n=5, setSeed = src_doc))
```



#### For more examples on how to use Preprocessing, please refer to [this file](https://github.com/FahedSabellioglu/genn/blob/master/preprocessing_examples.md).
#### For more examples on how to use LSTMGenerator and GRUGenerator, please refer to [this file](https://github.com/FahedSabellioglu/genn/blob/master/generator_examples.md).
#### For more examples on how to use GPT2, please refer to [this file](https://github.com/FahedSabellioglu/genn/blob/master/gpt2_examples.md).
#### For more examples on how to use GPT2Summarizer, please refer to [this file](https://github.com/FahedSabellioglu/genn/blob/master/gpt2_summarizer_examples.md).
## Contributing
 Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
## License
Distributed under the MIT License. See [LICENSE](https://github.com/FahedSabellioglu/genn/blob/master/LICENSE.txt) for more information.




%package help
Summary:	Development documents and examples for abdoTheBest
Provides:	python3-abdoTheBest-doc
%description help

# GeNN
[![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/FahedSabellioglu/genn/blob/master/LICENSE.txt)

GeNN (generative neural networks) is a high-level interface for text applications using PyTorch RNN's.


## Features

1.  Preprocessing: 
	- Parsing txt, json, and csv files.
	- NLTK, regex and spacy tokenization support.
	- GloVe and fastText pretrained embeddings, with the ability to fine-tune for your data.
2. Architectures and customization:
	- GPT2 with small, medium, and large variants.
	- LSTM and GRU, with variable size.
	- Variable number of layers and batches.
	- Dropout.
3. Text generation:
	- Random seed sampling from the n first tokens in all instances, or the most frequent token.
	- Top-K sampling for next token prediction with variable K.
	- Nucleus sampling for next token prediction with variable probability threshold.
4. Text Summarization:
	- All GPT2 variants can be trained to perform text summarization.

## Getting started

### How to install
```bash
pip install genn
```
### Prerequisites
* PyTorch 1.4.0
```bash
pip install torch==1.4.0
```
* Pytorch Transformers
```bash
pip install pytorch_transformers
```
* NumPy
```bash
pip install numpy
```
* fastText
```bash
pip install fasttext
```
Use the package manager [pip](https://pypi.org/project/genn) to install genn.

## Usage
### Text Generation:
##### RNNs (You can switch LSTMGenerator with GRUGenerator:
```python
from genn import Preprocessing, LSTMGenerator, GRUGenerator
#LSTM example
ds = Preprocessing("data.txt")
gen = LSTMGenerator(ds, nLayers = 2,
                        batchSize = 16,
                        embSize = 64,
                        lstmSize = 16,
                        epochs = 20)
			
#Train the model
gen.run()

# Generate 5 new documents
print(gen.generate_document(5))
```
##### GPT2 Generator:
```python
#GPT2 example
gen = GPT2("data.txt",
 	    taskToken = "Movie:",
	    epochs = 7,
	    variant = "medium")
#Train the model
gen.run()

#Generate 10 new documents
print(gen.generate_document(10))
```
### Text Summarization:
##### GPT2 Summarizer:
```python
#GPT2 Summarizer example
from genn import GPT2Summarizer
summ = GPT2Summarizer("data.txt",
					epochs=3,
					batch_size=8)

#Train the model
summ.run()

#Create 5 summaries of a source document
src_doc = "This is the source document to summarize"
print(summ.summarize_document(n=5, setSeed = src_doc))
```



#### For more examples on how to use Preprocessing, please refer to [this file](https://github.com/FahedSabellioglu/genn/blob/master/preprocessing_examples.md).
#### For more examples on how to use LSTMGenerator and GRUGenerator, please refer to [this file](https://github.com/FahedSabellioglu/genn/blob/master/generator_examples.md).
#### For more examples on how to use GPT2, please refer to [this file](https://github.com/FahedSabellioglu/genn/blob/master/gpt2_examples.md).
#### For more examples on how to use GPT2Summarizer, please refer to [this file](https://github.com/FahedSabellioglu/genn/blob/master/gpt2_summarizer_examples.md).
## Contributing
 Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
## License
Distributed under the MIT License. See [LICENSE](https://github.com/FahedSabellioglu/genn/blob/master/LICENSE.txt) for more information.




%prep
%autosetup -n abdoTheBest-1.0.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-abdoTheBest -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.0-1
- Package Spec generated