diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-18 06:36:55 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-18 06:36:55 +0000 |
commit | 2f264e1ce4b4f026b6124d2490c3b67350fae4d5 (patch) | |
tree | 82e24132d5e1e44602a7df02f60b3920ebf1e3e4 | |
parent | fa190a6957c43b8c5b3d278367ffc1f1f88c7a1f (diff) |
automatic import of python-abess
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-abess.spec | 111 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 113 insertions, 0 deletions
@@ -0,0 +1 @@ +/abess-0.4.6.tar.gz diff --git a/python-abess.spec b/python-abess.spec new file mode 100644 index 0000000..77fa5db --- /dev/null +++ b/python-abess.spec @@ -0,0 +1,111 @@ +%global _empty_manifest_terminate_build 0 +Name: python-abess +Version: 0.4.6 +Release: 1 +Summary: abess: Fast Best Subset Selection +License: GPL-3 +URL: https://abess.readthedocs.io +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1f/27/0abee072f9378ea41d484b0fcc3e67b5ff10380539da7321b234adbc182d/abess-0.4.6.tar.gz + +Requires: python3-numpy +Requires: python3-pandas +Requires: python3-scipy +Requires: python3-scikit-learn + +%description +**abess** (Adaptive BEst Subset Selection) library aims to solve general best subset selection, i.e., +find a small subset of predictors such that the resulting model is expected to have the highest accuracy. +The selection for best subset shows great value in scientific researches and practical application. +For example, clinicians wants to know whether a patient is health or not +based on the expression level of a few of important genes. +This library implements a generic algorithm framework to find the optimal solution in an extremely fast way [#1abess]_. +This framework now supports the detection of best subset under: +`linear regression`_, `(multi-class) classification`_, `censored-response modeling`_ [#4sksurv]_, +`multi-response modeling (a.k.a. multi-tasks learning)`_, etc. +It also supports the variants of best subset selection like +`group best subset selection`_ [#2gbes]_ and `nuisance best subset selection`_ [#3nbes]_. +Especially, the time complexity of (group) best subset selection for linear regression is certifiably polynomial [#1abess]_ [#2gbes]_. + +%package -n python3-abess +Summary: abess: Fast Best Subset Selection +Provides: python-abess +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +BuildRequires: python3-cffi +BuildRequires: gcc +BuildRequires: gdb +%description -n python3-abess +**abess** (Adaptive BEst Subset Selection) library aims to solve general best subset selection, i.e., +find a small subset of predictors such that the resulting model is expected to have the highest accuracy. +The selection for best subset shows great value in scientific researches and practical application. +For example, clinicians wants to know whether a patient is health or not +based on the expression level of a few of important genes. +This library implements a generic algorithm framework to find the optimal solution in an extremely fast way [#1abess]_. +This framework now supports the detection of best subset under: +`linear regression`_, `(multi-class) classification`_, `censored-response modeling`_ [#4sksurv]_, +`multi-response modeling (a.k.a. multi-tasks learning)`_, etc. +It also supports the variants of best subset selection like +`group best subset selection`_ [#2gbes]_ and `nuisance best subset selection`_ [#3nbes]_. +Especially, the time complexity of (group) best subset selection for linear regression is certifiably polynomial [#1abess]_ [#2gbes]_. + +%package help +Summary: Development documents and examples for abess +Provides: python3-abess-doc +%description help +**abess** (Adaptive BEst Subset Selection) library aims to solve general best subset selection, i.e., +find a small subset of predictors such that the resulting model is expected to have the highest accuracy. +The selection for best subset shows great value in scientific researches and practical application. +For example, clinicians wants to know whether a patient is health or not +based on the expression level of a few of important genes. +This library implements a generic algorithm framework to find the optimal solution in an extremely fast way [#1abess]_. +This framework now supports the detection of best subset under: +`linear regression`_, `(multi-class) classification`_, `censored-response modeling`_ [#4sksurv]_, +`multi-response modeling (a.k.a. multi-tasks learning)`_, etc. +It also supports the variants of best subset selection like +`group best subset selection`_ [#2gbes]_ and `nuisance best subset selection`_ [#3nbes]_. +Especially, the time complexity of (group) best subset selection for linear regression is certifiably polynomial [#1abess]_ [#2gbes]_. + +%prep +%autosetup -n abess-0.4.6 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-abess -f filelist.lst +%dir %{python3_sitearch}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Thu May 18 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.6-1 +- Package Spec generated @@ -0,0 +1 @@ +d5438e713e1e7032004636f5f96f625e abess-0.4.6.tar.gz |