summaryrefslogtreecommitdiff
path: root/python-abraham3k.spec
blob: cca40a104654edb2f68fe19257eb24d985b0e408 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
%global _empty_manifest_terminate_build 0
Name:		python-abraham3k
Version:	1.5.3
Release:	1
Summary:	Algorithmically predict public sentiment on a topic using VADER sentiment analysis
License:	MIT License
URL:		https://github.com/ckinateder/abraham
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/0e/6e/2b5d1d29a680b1e73a3e8dd53bf0d8ed8e70521e3e83116a7244534a39c3/abraham3k-1.5.3.tar.gz
BuildArch:	noarch

Requires:	python3-nltk
Requires:	python3-newspaper3k
Requires:	python3-GoogleNews
Requires:	python3-pandas
Requires:	python3-tqdm
Requires:	python3-flair
Requires:	python3-twint

%description
# abraham

![PyPI](https://img.shields.io/pypi/v/abraham3k)
![PyPI - Downloads](https://img.shields.io/pypi/dm/abraham3k)
![GitHub](https://img.shields.io/github/license/ckinateder/abraham)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/abraham3k)
![GitHub issues](https://img.shields.io/github/issues/ckinateder/abraham)
![GitHub last commit](https://img.shields.io/github/last-commit/ckinateder/abraham)


Algorithmically predict public sentiment on a topic using flair sentiment analysis.

## Installation

Installation is simple; just install via pip.

```bash
$ pip3 install abraham3k
```

## Basic Usage

The most simple way of use is to use the `_summary` functions.

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

watched = ["amd", "tesla"]

darthvader = Abraham(
      news_source="newsapi",
      newsapi_key="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
      bearer_token="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
      weights={"desc": 0.33, "text": 0.33, "title": 0.34},
)

scores = darthvader.news_summary(
      watched,
      start_time=datetime.now() - timedelta(days=1) 
      end_time=datetime.now(),
)
print(scores)

'''
{'amd': (56.2, 43.8), 'tesla': (40.4, 59.6)} # returns a tuple (positive count : negative count)
'''

scores = darthvader.twitter_summary(
      watched,
      start_time=datetime.now() - timedelta(days=1) 
      end_time=datetime.now(),
)
print(scores)

'''
{'amd': (57, 43), 'tesla': (42, 58)} # returns a tuple (positive count : negative count)
'''
```

You can run the function `news_sentiment` to get the raw scores for the news. This will return a nested dictionary with keys for each topic.

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

darthvader = Abraham(news_source="google") 

scores = darthvader.news_sentiment(["amd", 
                               "microsoft", 
                               "tesla", 
                               "theranos"],
                               )
print(scores['tesla']['text'])

'''
                                                 desc              datetime  probability sentiment
0   The latest PassMark ranking show AMD Intel swi...  2021-04-22T18:45:03Z     0.999276  NEGATIVE
1   The X570 chipset AMD offer advanced feature se...  2021-04-22T14:33:07Z     0.999649  POSITIVE
2   Apple released first developer beta macOS 11.4...  2021-04-21T19:10:02Z     0.990774  POSITIVE
3   Prepare terror PC. The release highly anticipa...  2021-04-22T18:00:02Z     0.839055  POSITIVE
4   Stressing ex x86 Canadian AI chip startup Tens...  2021-04-22T13:00:07Z     0.759295  POSITIVE
..                                                ...                   ...          ...       ...
95  Orthopaedic Medical Group Tampa Bay (OMG) exci...  2021-04-21T22:46:00Z     0.979155  POSITIVE
96  OtterBox appointed Leader, proudly 100% Austra...  2021-04-21T23:00:00Z     0.992927  POSITIVE
97  WATG, world's leading global destination hospi...  2021-04-21T22:52:00Z     0.993889  POSITIVE
98  AINQA Health Pte. Ltd. (Headquartered Singapor...  2021-04-22T02:30:00Z     0.641172  POSITIVE
99  Press Release Nokia publish first-quarter repo...  2021-04-22T05:00:00Z     0.894449  NEGATIVE
'''
```

The same way works for the twitter API (see below for integrating twitter usage).

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

darthvader = Abraham(news_source="google") 

scores = darthvader.twitter_sentiment(["amd", 
                                    "microsoft", 
                                    "tesla", 
                                    "theranos"]
                                    )
```

You can also just use a one-off function to get the sentiment from both the news and twitter combined.

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

darthvader = Abraham(news_source="google") 

scores = darthvader.summary(["tesla", "amd"], weights={"news": 0.5, "twitter": 0.5})

print(scores)

'''
{'amd': (59.0, 41.0), 'tesla': (46.1, 53.9)}
'''
```

There's also a built-in function for building a dataset of past sentiments. This follows the same format as the non-interval functions (`twitter_summary_interval`, `news_summary_interval`, `summary_interval`).

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

# this works best using the offical twitter api rather than twint
darthvader = Abraham(bearer_token="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx") 

scores = twitter_summary_interval(
        self,
        ["tesla", "amd"],
        oldest=datetime.now() - timedelta(days=1),
        newest=datetime.now(),
        interval=timedelta(hours=12),
        offset=timedelta(hours=1),
        size=100,
    )

print(scores)

'''
                    timestamp  positive  negative             lag
0  2021-05-08 11:46:57.033549      61.0      39.0 0 days 12:00:00
1  2021-05-08 10:46:57.033549      54.0      46.0 0 days 12:00:00
2  2021-05-08 09:46:57.033549      68.0      32.0 0 days 12:00:00
3  2021-05-08 08:46:57.033549      78.0      22.0 0 days 12:00:00
4  2021-05-08 07:46:57.033549      71.0      29.0 0 days 12:00:00
5  2021-05-08 06:46:57.033549      74.0      26.0 0 days 12:00:00
6  2021-05-08 05:46:57.033549      63.0      37.0 0 days 12:00:00
7  2021-05-08 04:46:57.033549      74.0      26.0 0 days 12:00:00
8  2021-05-08 03:46:57.033549      53.5      46.5 0 days 12:00:00
9  2021-05-08 02:46:57.033549      51.0      49.0 0 days 12:00:00
10 2021-05-08 01:46:57.033549      61.0      39.0 0 days 12:00:00
11 2021-05-08 00:46:57.033549      46.9      53.1 0 days 12:00:00
12 2021-05-07 23:46:57.033549      54.0      46.0 0 days 12:00:00
13 2021-05-07 22:46:57.033549      52.0      48.0 0 days 12:00:00
14 2021-05-07 21:46:57.033549      58.0      42.0 0 days 12:00:00
15 2021-05-07 20:46:57.033549      46.0      54.0 0 days 12:00:00
16 2021-05-07 19:46:57.033549      40.0      60.0 0 days 12:00:00
17 2021-05-07 18:46:57.033549      40.0      60.0 0 days 12:00:00
18 2021-05-07 17:46:57.033549      51.0      49.0 0 days 12:00:00
19 2021-05-07 16:46:57.033549      21.0      79.0 0 days 12:00:00
20 2021-05-07 15:46:57.033549      52.5      47.5 0 days 12:00:00
21 2021-05-07 14:46:57.033549      36.0      64.0 0 days 12:00:00
22 2021-05-07 13:46:57.033549      42.0      58.0 0 days 12:00:00
23 2021-05-07 12:46:57.033549      40.0      60.0 0 days 12:00:00
24 2021-05-07 11:46:57.033549      32.0      68.0 0 days 12:00:00
'''
```

Google trends is also in the process of being added. Currently, there's support for interest over time. You can access it like this.

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

darthvader = Abraham()

results = darthvader.interest_interval(
        ["BTC USD", "buy bitcoin"],
        start_time=(datetime.now() - timedelta(days=52)),
        end_time=datetime.now())

print(results)

'''
            BTC USD  buy bitcoin
date                            
2021-03-24       62           18
2021-03-25       68           16
2021-03-26       58           12
2021-03-27       47           15
2021-03-28       48           15
...
2021-05-08       48           27
2021-05-09       38           25
2021-05-10       43           20
2021-05-11       44           24
2021-05-12       38           20
'''
```

Numbers represent search interest relative to the highest point on the chart for the given region and time. A value of 100 is the peak popularity for the term. A value of 50 means that the term is half as popular. A score of 0 means there was not enough data for this term.

## Changing News Sources

`Abraham` supports two news sources: [Google News](https://news.google.com/) and [NewsAPI](https://newsapi.org/). Default is [Google News](https://news.google.com/), but you can change it to [NewsAPI](https://newsapi.org/) by passing `Abraham(news_source='newsapi', api_key='<your api key')` when instantiating. I'd highly recommend using [NewsAPI](https://newsapi.org/). It's much better than the [Google News](https://news.google.com/) API. Setup is really simple, just head to the [register](https://newsapi.org/register) page and sign up to get your API key.

## Twitter Functionality

I'd highly recommend integrating twitter. It's really simple; just head to [Twitter Developer](https://developer.twitter.com/en) to sign up and get your bearer token. If you don't want to sign up, you can actually use it free with the twint API (no keys needed). This is the default.

## Updates

I've made it pretty simple (at least for me) to push updates. Once I'm in the directory, I can run `$ ./build-push 1.2.0 "update install requirements"` where `1.2.0` is the version and `"update install requirements"` is the git commit message. It will update to PyPi and to the github repository.

## Notes

Currently, there's another algorithm in progress (SALT), including `salt.py` and `salt.ipynb` in the `abraham3k/` directory and the entire `models/` directory. They're not ready for use yet, so don't worry about importing them or anything.

## Contributions

Pull requests welcome!

## Detailed Usage

Coming soon. However, there is heavy documentation in the actual code.




%package -n python3-abraham3k
Summary:	Algorithmically predict public sentiment on a topic using VADER sentiment analysis
Provides:	python-abraham3k
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-abraham3k
# abraham

![PyPI](https://img.shields.io/pypi/v/abraham3k)
![PyPI - Downloads](https://img.shields.io/pypi/dm/abraham3k)
![GitHub](https://img.shields.io/github/license/ckinateder/abraham)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/abraham3k)
![GitHub issues](https://img.shields.io/github/issues/ckinateder/abraham)
![GitHub last commit](https://img.shields.io/github/last-commit/ckinateder/abraham)


Algorithmically predict public sentiment on a topic using flair sentiment analysis.

## Installation

Installation is simple; just install via pip.

```bash
$ pip3 install abraham3k
```

## Basic Usage

The most simple way of use is to use the `_summary` functions.

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

watched = ["amd", "tesla"]

darthvader = Abraham(
      news_source="newsapi",
      newsapi_key="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
      bearer_token="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
      weights={"desc": 0.33, "text": 0.33, "title": 0.34},
)

scores = darthvader.news_summary(
      watched,
      start_time=datetime.now() - timedelta(days=1) 
      end_time=datetime.now(),
)
print(scores)

'''
{'amd': (56.2, 43.8), 'tesla': (40.4, 59.6)} # returns a tuple (positive count : negative count)
'''

scores = darthvader.twitter_summary(
      watched,
      start_time=datetime.now() - timedelta(days=1) 
      end_time=datetime.now(),
)
print(scores)

'''
{'amd': (57, 43), 'tesla': (42, 58)} # returns a tuple (positive count : negative count)
'''
```

You can run the function `news_sentiment` to get the raw scores for the news. This will return a nested dictionary with keys for each topic.

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

darthvader = Abraham(news_source="google") 

scores = darthvader.news_sentiment(["amd", 
                               "microsoft", 
                               "tesla", 
                               "theranos"],
                               )
print(scores['tesla']['text'])

'''
                                                 desc              datetime  probability sentiment
0   The latest PassMark ranking show AMD Intel swi...  2021-04-22T18:45:03Z     0.999276  NEGATIVE
1   The X570 chipset AMD offer advanced feature se...  2021-04-22T14:33:07Z     0.999649  POSITIVE
2   Apple released first developer beta macOS 11.4...  2021-04-21T19:10:02Z     0.990774  POSITIVE
3   Prepare terror PC. The release highly anticipa...  2021-04-22T18:00:02Z     0.839055  POSITIVE
4   Stressing ex x86 Canadian AI chip startup Tens...  2021-04-22T13:00:07Z     0.759295  POSITIVE
..                                                ...                   ...          ...       ...
95  Orthopaedic Medical Group Tampa Bay (OMG) exci...  2021-04-21T22:46:00Z     0.979155  POSITIVE
96  OtterBox appointed Leader, proudly 100% Austra...  2021-04-21T23:00:00Z     0.992927  POSITIVE
97  WATG, world's leading global destination hospi...  2021-04-21T22:52:00Z     0.993889  POSITIVE
98  AINQA Health Pte. Ltd. (Headquartered Singapor...  2021-04-22T02:30:00Z     0.641172  POSITIVE
99  Press Release Nokia publish first-quarter repo...  2021-04-22T05:00:00Z     0.894449  NEGATIVE
'''
```

The same way works for the twitter API (see below for integrating twitter usage).

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

darthvader = Abraham(news_source="google") 

scores = darthvader.twitter_sentiment(["amd", 
                                    "microsoft", 
                                    "tesla", 
                                    "theranos"]
                                    )
```

You can also just use a one-off function to get the sentiment from both the news and twitter combined.

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

darthvader = Abraham(news_source="google") 

scores = darthvader.summary(["tesla", "amd"], weights={"news": 0.5, "twitter": 0.5})

print(scores)

'''
{'amd': (59.0, 41.0), 'tesla': (46.1, 53.9)}
'''
```

There's also a built-in function for building a dataset of past sentiments. This follows the same format as the non-interval functions (`twitter_summary_interval`, `news_summary_interval`, `summary_interval`).

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

# this works best using the offical twitter api rather than twint
darthvader = Abraham(bearer_token="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx") 

scores = twitter_summary_interval(
        self,
        ["tesla", "amd"],
        oldest=datetime.now() - timedelta(days=1),
        newest=datetime.now(),
        interval=timedelta(hours=12),
        offset=timedelta(hours=1),
        size=100,
    )

print(scores)

'''
                    timestamp  positive  negative             lag
0  2021-05-08 11:46:57.033549      61.0      39.0 0 days 12:00:00
1  2021-05-08 10:46:57.033549      54.0      46.0 0 days 12:00:00
2  2021-05-08 09:46:57.033549      68.0      32.0 0 days 12:00:00
3  2021-05-08 08:46:57.033549      78.0      22.0 0 days 12:00:00
4  2021-05-08 07:46:57.033549      71.0      29.0 0 days 12:00:00
5  2021-05-08 06:46:57.033549      74.0      26.0 0 days 12:00:00
6  2021-05-08 05:46:57.033549      63.0      37.0 0 days 12:00:00
7  2021-05-08 04:46:57.033549      74.0      26.0 0 days 12:00:00
8  2021-05-08 03:46:57.033549      53.5      46.5 0 days 12:00:00
9  2021-05-08 02:46:57.033549      51.0      49.0 0 days 12:00:00
10 2021-05-08 01:46:57.033549      61.0      39.0 0 days 12:00:00
11 2021-05-08 00:46:57.033549      46.9      53.1 0 days 12:00:00
12 2021-05-07 23:46:57.033549      54.0      46.0 0 days 12:00:00
13 2021-05-07 22:46:57.033549      52.0      48.0 0 days 12:00:00
14 2021-05-07 21:46:57.033549      58.0      42.0 0 days 12:00:00
15 2021-05-07 20:46:57.033549      46.0      54.0 0 days 12:00:00
16 2021-05-07 19:46:57.033549      40.0      60.0 0 days 12:00:00
17 2021-05-07 18:46:57.033549      40.0      60.0 0 days 12:00:00
18 2021-05-07 17:46:57.033549      51.0      49.0 0 days 12:00:00
19 2021-05-07 16:46:57.033549      21.0      79.0 0 days 12:00:00
20 2021-05-07 15:46:57.033549      52.5      47.5 0 days 12:00:00
21 2021-05-07 14:46:57.033549      36.0      64.0 0 days 12:00:00
22 2021-05-07 13:46:57.033549      42.0      58.0 0 days 12:00:00
23 2021-05-07 12:46:57.033549      40.0      60.0 0 days 12:00:00
24 2021-05-07 11:46:57.033549      32.0      68.0 0 days 12:00:00
'''
```

Google trends is also in the process of being added. Currently, there's support for interest over time. You can access it like this.

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

darthvader = Abraham()

results = darthvader.interest_interval(
        ["BTC USD", "buy bitcoin"],
        start_time=(datetime.now() - timedelta(days=52)),
        end_time=datetime.now())

print(results)

'''
            BTC USD  buy bitcoin
date                            
2021-03-24       62           18
2021-03-25       68           16
2021-03-26       58           12
2021-03-27       47           15
2021-03-28       48           15
...
2021-05-08       48           27
2021-05-09       38           25
2021-05-10       43           20
2021-05-11       44           24
2021-05-12       38           20
'''
```

Numbers represent search interest relative to the highest point on the chart for the given region and time. A value of 100 is the peak popularity for the term. A value of 50 means that the term is half as popular. A score of 0 means there was not enough data for this term.

## Changing News Sources

`Abraham` supports two news sources: [Google News](https://news.google.com/) and [NewsAPI](https://newsapi.org/). Default is [Google News](https://news.google.com/), but you can change it to [NewsAPI](https://newsapi.org/) by passing `Abraham(news_source='newsapi', api_key='<your api key')` when instantiating. I'd highly recommend using [NewsAPI](https://newsapi.org/). It's much better than the [Google News](https://news.google.com/) API. Setup is really simple, just head to the [register](https://newsapi.org/register) page and sign up to get your API key.

## Twitter Functionality

I'd highly recommend integrating twitter. It's really simple; just head to [Twitter Developer](https://developer.twitter.com/en) to sign up and get your bearer token. If you don't want to sign up, you can actually use it free with the twint API (no keys needed). This is the default.

## Updates

I've made it pretty simple (at least for me) to push updates. Once I'm in the directory, I can run `$ ./build-push 1.2.0 "update install requirements"` where `1.2.0` is the version and `"update install requirements"` is the git commit message. It will update to PyPi and to the github repository.

## Notes

Currently, there's another algorithm in progress (SALT), including `salt.py` and `salt.ipynb` in the `abraham3k/` directory and the entire `models/` directory. They're not ready for use yet, so don't worry about importing them or anything.

## Contributions

Pull requests welcome!

## Detailed Usage

Coming soon. However, there is heavy documentation in the actual code.




%package help
Summary:	Development documents and examples for abraham3k
Provides:	python3-abraham3k-doc
%description help
# abraham

![PyPI](https://img.shields.io/pypi/v/abraham3k)
![PyPI - Downloads](https://img.shields.io/pypi/dm/abraham3k)
![GitHub](https://img.shields.io/github/license/ckinateder/abraham)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/abraham3k)
![GitHub issues](https://img.shields.io/github/issues/ckinateder/abraham)
![GitHub last commit](https://img.shields.io/github/last-commit/ckinateder/abraham)


Algorithmically predict public sentiment on a topic using flair sentiment analysis.

## Installation

Installation is simple; just install via pip.

```bash
$ pip3 install abraham3k
```

## Basic Usage

The most simple way of use is to use the `_summary` functions.

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

watched = ["amd", "tesla"]

darthvader = Abraham(
      news_source="newsapi",
      newsapi_key="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
      bearer_token="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
      weights={"desc": 0.33, "text": 0.33, "title": 0.34},
)

scores = darthvader.news_summary(
      watched,
      start_time=datetime.now() - timedelta(days=1) 
      end_time=datetime.now(),
)
print(scores)

'''
{'amd': (56.2, 43.8), 'tesla': (40.4, 59.6)} # returns a tuple (positive count : negative count)
'''

scores = darthvader.twitter_summary(
      watched,
      start_time=datetime.now() - timedelta(days=1) 
      end_time=datetime.now(),
)
print(scores)

'''
{'amd': (57, 43), 'tesla': (42, 58)} # returns a tuple (positive count : negative count)
'''
```

You can run the function `news_sentiment` to get the raw scores for the news. This will return a nested dictionary with keys for each topic.

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

darthvader = Abraham(news_source="google") 

scores = darthvader.news_sentiment(["amd", 
                               "microsoft", 
                               "tesla", 
                               "theranos"],
                               )
print(scores['tesla']['text'])

'''
                                                 desc              datetime  probability sentiment
0   The latest PassMark ranking show AMD Intel swi...  2021-04-22T18:45:03Z     0.999276  NEGATIVE
1   The X570 chipset AMD offer advanced feature se...  2021-04-22T14:33:07Z     0.999649  POSITIVE
2   Apple released first developer beta macOS 11.4...  2021-04-21T19:10:02Z     0.990774  POSITIVE
3   Prepare terror PC. The release highly anticipa...  2021-04-22T18:00:02Z     0.839055  POSITIVE
4   Stressing ex x86 Canadian AI chip startup Tens...  2021-04-22T13:00:07Z     0.759295  POSITIVE
..                                                ...                   ...          ...       ...
95  Orthopaedic Medical Group Tampa Bay (OMG) exci...  2021-04-21T22:46:00Z     0.979155  POSITIVE
96  OtterBox appointed Leader, proudly 100% Austra...  2021-04-21T23:00:00Z     0.992927  POSITIVE
97  WATG, world's leading global destination hospi...  2021-04-21T22:52:00Z     0.993889  POSITIVE
98  AINQA Health Pte. Ltd. (Headquartered Singapor...  2021-04-22T02:30:00Z     0.641172  POSITIVE
99  Press Release Nokia publish first-quarter repo...  2021-04-22T05:00:00Z     0.894449  NEGATIVE
'''
```

The same way works for the twitter API (see below for integrating twitter usage).

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

darthvader = Abraham(news_source="google") 

scores = darthvader.twitter_sentiment(["amd", 
                                    "microsoft", 
                                    "tesla", 
                                    "theranos"]
                                    )
```

You can also just use a one-off function to get the sentiment from both the news and twitter combined.

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

darthvader = Abraham(news_source="google") 

scores = darthvader.summary(["tesla", "amd"], weights={"news": 0.5, "twitter": 0.5})

print(scores)

'''
{'amd': (59.0, 41.0), 'tesla': (46.1, 53.9)}
'''
```

There's also a built-in function for building a dataset of past sentiments. This follows the same format as the non-interval functions (`twitter_summary_interval`, `news_summary_interval`, `summary_interval`).

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

# this works best using the offical twitter api rather than twint
darthvader = Abraham(bearer_token="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx") 

scores = twitter_summary_interval(
        self,
        ["tesla", "amd"],
        oldest=datetime.now() - timedelta(days=1),
        newest=datetime.now(),
        interval=timedelta(hours=12),
        offset=timedelta(hours=1),
        size=100,
    )

print(scores)

'''
                    timestamp  positive  negative             lag
0  2021-05-08 11:46:57.033549      61.0      39.0 0 days 12:00:00
1  2021-05-08 10:46:57.033549      54.0      46.0 0 days 12:00:00
2  2021-05-08 09:46:57.033549      68.0      32.0 0 days 12:00:00
3  2021-05-08 08:46:57.033549      78.0      22.0 0 days 12:00:00
4  2021-05-08 07:46:57.033549      71.0      29.0 0 days 12:00:00
5  2021-05-08 06:46:57.033549      74.0      26.0 0 days 12:00:00
6  2021-05-08 05:46:57.033549      63.0      37.0 0 days 12:00:00
7  2021-05-08 04:46:57.033549      74.0      26.0 0 days 12:00:00
8  2021-05-08 03:46:57.033549      53.5      46.5 0 days 12:00:00
9  2021-05-08 02:46:57.033549      51.0      49.0 0 days 12:00:00
10 2021-05-08 01:46:57.033549      61.0      39.0 0 days 12:00:00
11 2021-05-08 00:46:57.033549      46.9      53.1 0 days 12:00:00
12 2021-05-07 23:46:57.033549      54.0      46.0 0 days 12:00:00
13 2021-05-07 22:46:57.033549      52.0      48.0 0 days 12:00:00
14 2021-05-07 21:46:57.033549      58.0      42.0 0 days 12:00:00
15 2021-05-07 20:46:57.033549      46.0      54.0 0 days 12:00:00
16 2021-05-07 19:46:57.033549      40.0      60.0 0 days 12:00:00
17 2021-05-07 18:46:57.033549      40.0      60.0 0 days 12:00:00
18 2021-05-07 17:46:57.033549      51.0      49.0 0 days 12:00:00
19 2021-05-07 16:46:57.033549      21.0      79.0 0 days 12:00:00
20 2021-05-07 15:46:57.033549      52.5      47.5 0 days 12:00:00
21 2021-05-07 14:46:57.033549      36.0      64.0 0 days 12:00:00
22 2021-05-07 13:46:57.033549      42.0      58.0 0 days 12:00:00
23 2021-05-07 12:46:57.033549      40.0      60.0 0 days 12:00:00
24 2021-05-07 11:46:57.033549      32.0      68.0 0 days 12:00:00
'''
```

Google trends is also in the process of being added. Currently, there's support for interest over time. You can access it like this.

```python
from abraham3k.prophets import Abraham
from datetime import datetime, timedelta

darthvader = Abraham()

results = darthvader.interest_interval(
        ["BTC USD", "buy bitcoin"],
        start_time=(datetime.now() - timedelta(days=52)),
        end_time=datetime.now())

print(results)

'''
            BTC USD  buy bitcoin
date                            
2021-03-24       62           18
2021-03-25       68           16
2021-03-26       58           12
2021-03-27       47           15
2021-03-28       48           15
...
2021-05-08       48           27
2021-05-09       38           25
2021-05-10       43           20
2021-05-11       44           24
2021-05-12       38           20
'''
```

Numbers represent search interest relative to the highest point on the chart for the given region and time. A value of 100 is the peak popularity for the term. A value of 50 means that the term is half as popular. A score of 0 means there was not enough data for this term.

## Changing News Sources

`Abraham` supports two news sources: [Google News](https://news.google.com/) and [NewsAPI](https://newsapi.org/). Default is [Google News](https://news.google.com/), but you can change it to [NewsAPI](https://newsapi.org/) by passing `Abraham(news_source='newsapi', api_key='<your api key')` when instantiating. I'd highly recommend using [NewsAPI](https://newsapi.org/). It's much better than the [Google News](https://news.google.com/) API. Setup is really simple, just head to the [register](https://newsapi.org/register) page and sign up to get your API key.

## Twitter Functionality

I'd highly recommend integrating twitter. It's really simple; just head to [Twitter Developer](https://developer.twitter.com/en) to sign up and get your bearer token. If you don't want to sign up, you can actually use it free with the twint API (no keys needed). This is the default.

## Updates

I've made it pretty simple (at least for me) to push updates. Once I'm in the directory, I can run `$ ./build-push 1.2.0 "update install requirements"` where `1.2.0` is the version and `"update install requirements"` is the git commit message. It will update to PyPi and to the github repository.

## Notes

Currently, there's another algorithm in progress (SALT), including `salt.py` and `salt.ipynb` in the `abraham3k/` directory and the entire `models/` directory. They're not ready for use yet, so don't worry about importing them or anything.

## Contributions

Pull requests welcome!

## Detailed Usage

Coming soon. However, there is heavy documentation in the actual code.




%prep
%autosetup -n abraham3k-1.5.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-abraham3k -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.5.3-1
- Package Spec generated