diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-10 03:50:50 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-10 03:50:50 +0000 |
commit | 14987013a1320adeaf3506d2fc02467a74fec62f (patch) | |
tree | 0466290e0d139e3ce87b170baea306ca11682300 | |
parent | 75c2920fb698ffe922339d140a3556625c7d3277 (diff) |
automatic import of python-active-semi-supervised-clusteringopeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-active-semi-supervised-clustering.spec | 268 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 270 insertions, 0 deletions
@@ -0,0 +1 @@ +/active-semi-supervised-clustering-0.0.1.tar.gz diff --git a/python-active-semi-supervised-clustering.spec b/python-active-semi-supervised-clustering.spec new file mode 100644 index 0000000..0ddf58b --- /dev/null +++ b/python-active-semi-supervised-clustering.spec @@ -0,0 +1,268 @@ +%global _empty_manifest_terminate_build 0 +Name: python-active-semi-supervised-clustering +Version: 0.0.1 +Release: 1 +Summary: Active semi-supervised clustering algorithms for scikit-learn +License: MIT License +URL: https://github.com/datamole-ai/active-semi-supervised-clustering +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/84/cc/8189ebe735cd7b6c53869775969d89c6fe2d68a872ddd1cc24df3a38d1ba/active-semi-supervised-clustering-0.0.1.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-scipy +Requires: python3-scikit-learn +Requires: python3-metric-learn + +%description +# active-semi-supervised-clustering + +Active semi-supervised clustering algorithms for scikit-learn. + +## Algorithms + +### Semi-supervised clustering + +* Seeded-KMeans +* Constrainted-KMeans +* COP-KMeans +* Pairwise constrained K-Means (PCK-Means) +* Metric K-Means (MK-Means) +* Metric pairwise constrained K-Means (MPCK-Means) + +### Active learning of pairwise clustering + +* Explore & Consolidate +* Min-max +* Normalized point-based uncertainty (NPU) method + +## Installation + +``` +pip install active-semi-supervised-clustering +``` + +## Usage + +```python +from sklearn import datasets, metrics +from active_semi_clustering.semi_supervised.pairwise_constraints import PCKMeans +from active_semi_clustering.active.pairwise_constraints import ExampleOracle, ExploreConsolidate, MinMax +``` + +```python +X, y = datasets.load_iris(return_X_y=True) +``` + +First, obtain some pairwise constraints from an oracle. + +```python +# TODO implement your own oracle that will, for example, query a domain expert via GUI or CLI +oracle = ExampleOracle(y, max_queries_cnt=10) + +active_learner = MinMax(n_clusters=3) +active_learner.fit(X, oracle=oracle) +pairwise_constraints = active_learner.pairwise_constraints_ +``` + +Then, use the constraints to do the clustering. + +```python +clusterer = PCKMeans(n_clusters=3) +clusterer.fit(X, ml=pairwise_constraints[0], cl=pairwise_constraints[1]) +``` + +Evaluate the clustering using Adjusted Rand Score. + +```python +metrics.adjusted_rand_score(y, clusterer.labels_) +``` + + + + +%package -n python3-active-semi-supervised-clustering +Summary: Active semi-supervised clustering algorithms for scikit-learn +Provides: python-active-semi-supervised-clustering +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-active-semi-supervised-clustering +# active-semi-supervised-clustering + +Active semi-supervised clustering algorithms for scikit-learn. + +## Algorithms + +### Semi-supervised clustering + +* Seeded-KMeans +* Constrainted-KMeans +* COP-KMeans +* Pairwise constrained K-Means (PCK-Means) +* Metric K-Means (MK-Means) +* Metric pairwise constrained K-Means (MPCK-Means) + +### Active learning of pairwise clustering + +* Explore & Consolidate +* Min-max +* Normalized point-based uncertainty (NPU) method + +## Installation + +``` +pip install active-semi-supervised-clustering +``` + +## Usage + +```python +from sklearn import datasets, metrics +from active_semi_clustering.semi_supervised.pairwise_constraints import PCKMeans +from active_semi_clustering.active.pairwise_constraints import ExampleOracle, ExploreConsolidate, MinMax +``` + +```python +X, y = datasets.load_iris(return_X_y=True) +``` + +First, obtain some pairwise constraints from an oracle. + +```python +# TODO implement your own oracle that will, for example, query a domain expert via GUI or CLI +oracle = ExampleOracle(y, max_queries_cnt=10) + +active_learner = MinMax(n_clusters=3) +active_learner.fit(X, oracle=oracle) +pairwise_constraints = active_learner.pairwise_constraints_ +``` + +Then, use the constraints to do the clustering. + +```python +clusterer = PCKMeans(n_clusters=3) +clusterer.fit(X, ml=pairwise_constraints[0], cl=pairwise_constraints[1]) +``` + +Evaluate the clustering using Adjusted Rand Score. + +```python +metrics.adjusted_rand_score(y, clusterer.labels_) +``` + + + + +%package help +Summary: Development documents and examples for active-semi-supervised-clustering +Provides: python3-active-semi-supervised-clustering-doc +%description help +# active-semi-supervised-clustering + +Active semi-supervised clustering algorithms for scikit-learn. + +## Algorithms + +### Semi-supervised clustering + +* Seeded-KMeans +* Constrainted-KMeans +* COP-KMeans +* Pairwise constrained K-Means (PCK-Means) +* Metric K-Means (MK-Means) +* Metric pairwise constrained K-Means (MPCK-Means) + +### Active learning of pairwise clustering + +* Explore & Consolidate +* Min-max +* Normalized point-based uncertainty (NPU) method + +## Installation + +``` +pip install active-semi-supervised-clustering +``` + +## Usage + +```python +from sklearn import datasets, metrics +from active_semi_clustering.semi_supervised.pairwise_constraints import PCKMeans +from active_semi_clustering.active.pairwise_constraints import ExampleOracle, ExploreConsolidate, MinMax +``` + +```python +X, y = datasets.load_iris(return_X_y=True) +``` + +First, obtain some pairwise constraints from an oracle. + +```python +# TODO implement your own oracle that will, for example, query a domain expert via GUI or CLI +oracle = ExampleOracle(y, max_queries_cnt=10) + +active_learner = MinMax(n_clusters=3) +active_learner.fit(X, oracle=oracle) +pairwise_constraints = active_learner.pairwise_constraints_ +``` + +Then, use the constraints to do the clustering. + +```python +clusterer = PCKMeans(n_clusters=3) +clusterer.fit(X, ml=pairwise_constraints[0], cl=pairwise_constraints[1]) +``` + +Evaluate the clustering using Adjusted Rand Score. + +```python +metrics.adjusted_rand_score(y, clusterer.labels_) +``` + + + + +%prep +%autosetup -n active-semi-supervised-clustering-0.0.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-active-semi-supervised-clustering -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.1-1 +- Package Spec generated @@ -0,0 +1 @@ +b7bf75e99c995593f831865fac6922bf active-semi-supervised-clustering-0.0.1.tar.gz |