1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
|
%global _empty_manifest_terminate_build 0
Name: python-adapt
Version: 0.4.2
Release: 1
Summary: Awesome Domain Adaptation Python Toolbox for Tensorflow and Scikit-learn
License: BSD-2
URL: https://github.com/adapt-python/adapt.git
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d5/45/601daeb1a7af4e4d97950c7f020946052fe4785f2b671dd6174a7177c1e4/adapt-0.4.2.tar.gz
BuildArch: noarch
%description
ADAPT is an open source library providing numerous tools to perform Transfer Learning and Domain Adaptation.
The purpose of the ADAPT library is to facilitate the access to transfer learning algorithms for a large public, including industrial players. ADAPT is specifically designed for [Scikit-learn](https://scikit-learn.org/stable/) and [Tensorflow](https://www.tensorflow.org/) users with a "user-friendly" approach. All objects in ADAPT implement the ***fit***, ***predict*** and ***score*** methods like any scikit-learn object. A very detailed documentation with several examples is provided:
<table>
<tr valign="top">
<td width="50%" >
<a href="https://adapt-python.github.io/adapt/examples/Sample_bias_example.html">
<br>
<b>Sample bias correction</b>
<br>
<br>
<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/sample_bias_corr_img.png">
</a>
</td>
<td width="50%">
<a href="https://adapt-python.github.io/adapt/examples/Flowers_example.html">
<br>
<b>Model-based Transfer</b>
<br>
<br>
<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/finetuned.png">
</a>
</td>
</tr>
<tr valign="top">
<td width="50%">
<a href="https://adapt-python.github.io/adapt/examples/Office_example.html">
<br>
<b>Deep Domain Adaptation</b>
<br>
<br>
<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/office_item.png">
</a>
</td>
<td width="50%">
<a href="https://adapt-python.github.io/adapt/examples/Multi_fidelity.html">
<br>
<b>Multi-Fidelity Transfer</b>
<br>
<br>
<img src="https://raw.githubusercontent.com/adapt-python/adapt/a490a5c4cefb80d6222bc831a8cc25b2f65221ce/docs/_static/images/multifidelity_setup.png">
</a>
</td>
</tr>
</table>
## Installation and Usage
This package is available on [Pypi](https://pypi.org/project/adapt) and can be installed with the following command line:
```
pip install adapt
```
The following dependencies are required and will be installed with the library:
- `numpy`
- `scipy`
- `tensorflow` (>= 2.0)
- `scikit-learn`
- `cvxopt`
If for some reason, these packages failed to install, you can do it manually with:
```
pip install numpy scipy tensorflow scikit-learn cvxopt
```
Finally import the module in your python scripts with:
```python
import adapt
```
A simple example of usage is given in the [Qick-Start](#Quick-Start) below.
## ADAPT Guideline
The transfer learning methods implemented in ADAPT can be seen as scikit-learn "Meta-estimators" or tensorflow "Custom Model":
<table>
<tr valign="top">
<td width="33%" >
<br>
<b>Adapt Estimator</b>
<br>
<br>
```python
AdaptEstimator(
estimator = """A scikit-learn estimator
(like Ridge(alpha=1.) for example)
or a Tensorflow Model""",
Xt = "The target input features",
yt = "The target output labels (if any)",
**params = "Hyper-parameters of the AdaptEstimator"
)
```
<td width="33%">
<br>
<b>Deep Adapt Estimator</b>
<br>
<br>
```python
DeepAdaptEstimator(
encoder = "A Tensorflow Model (if required)",
task = "A Tensorflow Model (if required)",
discriminator = "A Tensorflow Model (if required)",
Xt = "The target input features",
yt = "The target output labels (if any)",
**params = """Hyper-parameters of the DeepAdaptEstimator and
the compile and fit params (optimizer, epochs...)"""
)
```
</td>
</td>
<td width="33%">
<br>
<b>Scikit-learn Meta-Estimator</b>
<br>
<br>
```python
SklearnMetaEstimator(
base_estimator = """A scikit-learn estimator
(like Ridge(alpha=1.) for example)""",
**params = "Hyper-parameters of the SklearnMetaEstimator"
)
```
</td>
</tr>
</table>
As you can see, the main difference between ADAPT models and scikit-learn and tensorflow objects is the two arguments `Xt, yt` which refer to the target data. Indeed, in classical machine learning, one assumes that the fitted model is applied on data distributed according to the training distribution. This is why, in this setting, one performs cross-validation and splits uniformly the training set to evaluate a model.
In the transfer learning framework, however, one assumes that the target data (on which the model will be used at the end) are not distributed like the source training data. Moreover, one assumes that the target distribution can be estimated and compared to the training distribution. Either because a small sample of labeled target data `Xt, yt` is avalaible or because a large sample of unlabeled target data `Xt` is at one's disposal.
Thus, the transfer learning models from the ADAPT library can be seen as machine learning models that are fitted with a specific target in mind. This target is different but somewhat related to the training data. This is generally achieved by a transformation of the input features (see [feature-based transfer](https://adapt-python.github.io/adapt/contents.html#adapt-feature-based-feature-based-methods)) or by importance weighting (see [instance-based transfer](https://adapt-python.github.io/adapt/contents.html#adapt-instance-based)). In some cases, the training data are no more available but one aims at fine-tuning a pre-trained source model on a new target dataset (see [parameter-based transfer](https://adapt-python.github.io/adapt/contents.html#adapt-parameter-based)).
## Navigate into ADAPT
The ADAPT library proposes numerous transfer algorithms and it can be hard to know which algorithm is best suited for a particular problem. If you do not know which algorithm to choose, this [flowchart](https://adapt-python.github.io/adapt/map.html) may help you:
[<img src="https://github.com/adapt-python/adapt/raw/master/src_docs/_static/images/thumbnai_flowchart.PNG" width=30%>](https://adapt-python.github.io/adapt/map.html)
## Quick Start
Here is a simple usage example of the ADAPT library. This is a simulation of a 1D sample bias problem with binary classfication task. The source input data are distributed according to a Gaussian distribution centered in -1 with standard deviation of 2. The target data are drawn from Gaussian distribution centered in 1 with standard deviation of 2. The output labels are equal to 1 in the interval [-1, 1] and 0 elsewhere. We apply the transfer method [KMM](https://adapt-python.github.io/adapt/generated/adapt.instance_based.KMM.html) which is an unsupervised instance-based algortihm.
```python
# Import standard librairies
import numpy as np
from sklearn.linear_model import LogisticRegression
# Import KMM method form adapt.instance_based module
from adapt.instance_based import KMM
np.random.seed(0)
# Create source dataset (Xs ~ N(-1, 2))
# ys = 1 for ys in [-1, 1] else, ys = 0
Xs = np.random.randn(1000, 1)*2-1
ys = (Xs[:, 0] > -1.) & (Xs[:, 0] < 1.)
# Create target dataset (Xt ~ N(1, 2)), yt ~ ys
Xt = np.random.randn(1000, 1)*2+1
yt = (Xt[:, 0] > -1.) & (Xt[:, 0] < 1.)
# Instantiate and fit a source only model for comparison
src_only = LogisticRegression(penalty="none")
src_only.fit(Xs, ys)
# Instantiate a KMM model : estimator and target input
# data Xt are given as parameters with the kernel parameters
adapt_model = KMM(
estimator=LogisticRegression(penalty="none"),
Xt=Xt,
kernel="rbf", # Gaussian kernel
gamma=1., # Bandwidth of the kernel
verbose=0,
random_state=0
)
# Fit the model.
adapt_model.fit(Xs, ys);
# Get the score on target data
adapt_model.score(Xt, yt)
```
```python
>>> 0.574
```
| <img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/results_qs.png"> |
|:--:|
| **Quick-Start Plotting Results**. *The dotted and dashed lines are respectively the class separation of the "source only" and KMM models. Note that the predicted positive class is on the right of the dotted line for the "source only" model but on the left of the dashed line for KMM. (The code for plotting the Figure is available [here](https://adapt-python.github.io/adapt/examples/Quick_start.html))* |
## Contents
ADAPT package is divided in three sub-modules containing the following domain adaptation methods:
### Feature-based methods
<img src="https://raw.githubusercontent.com/adapt-python/adapt/a490a5c4cefb80d6222bc831a8cc25b2f65221ce/docs/_static/images/feature_based.png">
- [FA](https://adapt-python.github.io/adapt/generated/adapt.feature_based.FA.html) (*Frustratingly Easy Domain Adaptation*) [[paper]](https://arxiv.org/pdf/0907.1815.pdf)
- [SA](https://adapt-python.github.io/adapt/generated/adapt.feature_based.SA.html) (*Subspace Alignment*) [[paper]](https://arxiv.org/abs/1409.5241)
- [fMMD](https://adapt-python.github.io/adapt/generated/adapt.feature_based.SA.html) (*feature Selection with MMD*) [[paper]](https://www.cs.cmu.edu/afs/cs/Web/People/jgc/publication/Feature%20Selection%20for%20Transfer%20Learning.pdf)
- [DANN](https://adapt-python.github.io/adapt/generated/adapt.feature_based.DANN.html) (*Discriminative Adversarial Neural Network*) [[paper]](https://jmlr.org/papers/volume17/15-239/15-239.pdf)
- [ADDA](https://adapt-python.github.io/adapt/generated/adapt.feature_based.ADDA.html) (*Adversarial Discriminative Domain Adaptation*) [[paper]](https://arxiv.org/pdf/1702.05464.pdf)
- [CORAL](https://adapt-python.github.io/adapt/generated/adapt.feature_based.CORAL.html) (*CORrelation ALignment*) [[paper]](https://arxiv.org/pdf/1511.05547.pdf)
- [DeepCORAL](https://adapt-python.github.io/adapt/generated/adapt.feature_based.DeepCORAL.html) (*Deep CORrelation ALignment*) [[paper]](https://arxiv.org/pdf/1607.01719.pdf)
- [MCD](https://adapt-python.github.io/adapt/generated/adapt.feature_based.MCD.html) (*Maximum Classifier Discrepancy*) [[paper]](https://arxiv.org/pdf/1712.02560.pdf)
- [MDD](https://adapt-python.github.io/adapt/generated/adapt.feature_based.MDD.html) (*Margin Disparity Discrepancy*) [[paper]](https://arxiv.org/pdf/1904.05801.pdf)
- [WDGRL](https://adapt-python.github.io/adapt/generated/adapt.feature_based.WDGRL.html) (*Wasserstein Distance Guided Representation Learning*) [[paper]](https://arxiv.org/pdf/1707.01217.pdf)
- [CDAN](https://adapt-python.github.io/adapt/generated/adapt.feature_based.CDAN.html) (*Conditional Adversarial Domain Adaptation*) [[paper]](https://arxiv.org/pdf/1705.10667.pdf)
- [CCSA](https://adapt-python.github.io/adapt/generated/adapt.feature_based.CCSA.html) (*Classification and Contrastive Semantic Alignment*) [[paper]](https://arxiv.org/abs/1709.10190)
### Instance-based methods
<img src="https://raw.githubusercontent.com/adapt-python/adapt/a490a5c4cefb80d6222bc831a8cc25b2f65221ce/docs/_static/images/instance_based.png">
- [LDM](https://adapt-python.github.io/adapt/generated/adapt.instance_based.LDM.html) (*Linear Discrepancy Minimization*) [[paper]](https://arxiv.org/pdf/0902.3430.pdf)
- [KMM](https://adapt-python.github.io/adapt/generated/adapt.instance_based.KMM.html) (*Kernel Mean Matching*) [[paper]](https://proceedings.neurips.cc/paper/2006/file/a2186aa7c086b46ad4e8bf81e2a3a19b-Paper.pdf)
- [KLIEP](https://adapt-python.github.io/adapt/generated/adapt.instance_based.KLIEP.html) (*Kullback–Leibler Importance Estimation Procedure*) [[paper]](https://proceedings.neurips.cc/paper/2007/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper.pdf)
- [TrAdaBoost](https://adapt-python.github.io/adapt/generated/adapt.instance_based.TrAdaBoost.html) (*Transfer AdaBoost*) [[paper]](https://cse.hkust.edu.hk/~qyang/Docs/2007/tradaboost.pdf)
- [TrAdaBoostR2](https://adapt-python.github.io/adapt/generated/adapt.instance_based.TrAdaBoostR2.html) (*Transfer AdaBoost for Regression*) [[paper]](https://www.cs.utexas.edu/~dpardoe/papers/ICML10.pdf)
- [TwoStageTrAdaBoostR2](https://adapt-python.github.io/adapt/generated/adapt.instance_based.TwoStageTrAdaBoostR2.html) (*Two Stage Transfer AdaBoost for Regression*) [[paper]](https://www.cs.utexas.edu/~dpardoe/papers/ICML10.pdf)
- [NearestNeighborsWeighting](https://adapt-python.github.io/adapt/generated/adapt.instance_based.NearestNeighborsWeighting.html) (*Nearest Neighbors Weighting*) [[paper]](https://arxiv.org/pdf/2102.02291.pdf)
- [WANN](https://adapt-python.github.io/adapt/generated/adapt.instance_based.WANN.html) (*Weighting Adversarial Neural Network*) [[paper]](https://arxiv.org/pdf/2006.08251.pdf)
### Parameter-based methods
<img src="https://raw.githubusercontent.com/adapt-python/adapt/a490a5c4cefb80d6222bc831a8cc25b2f65221ce/docs/_static/images/parameter_based.png">
- [RegularTransferLR](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.RegularTransferLR.html) (*Regular Transfer with Linear Regression*) [[paper]](https://www.microsoft.com/en-us/research/wp-content/uploads/2004/07/2004-chelba-emnlp.pdf)
- [RegularTransferLC](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.RegularTransferLC.html) (*Regular Transfer with Linear Classification*) [[paper]](https://www.microsoft.com/en-us/research/wp-content/uploads/2004/07/2004-chelba-emnlp.pdf)
- [RegularTransferNN](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.RegularTransferNN.html) (*Regular Transfer with Neural Network*) [[paper]](https://hal.inria.fr/hal-00911179v1/document)
- [FineTuning](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.FineTuning.html) (*Fine-Tuning*) [[paper]](https://hal.inria.fr/hal-00911179v1/document)
- [TransferTreeClassifier](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.TransferTreeClassifier.html) (*Transfer Tree Classifier*) [[paper]](https://ieeexplore.ieee.org/document/8995296)
- [TransferTreeForest](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.TransferTreeForest.html) (*Transfer Tree Forest*) [[paper]](https://ieeexplore.ieee.org/document/8995296)
## Reference
If you use this library in your research, please cite ADAPT using the following reference: https://arxiv.org/pdf/2107.03049.pdf
```
@article{de2021adapt,
title={ADAPT: Awesome Domain Adaptation Python Toolbox},
author={de Mathelin, Antoine and Deheeger, Fran{\c{c}}ois and Richard, Guillaume and Mougeot, Mathilde and Vayatis, Nicolas},
journal={arXiv preprint arXiv:2107.03049},
year={2021}
}
```
## Acknowledgement
This work has been funded by Michelin and the Industrial Data Analytics and Machine Learning chair from ENS Paris-Saclay, Borelli center.
[<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/michelin.png" width=200px alt="Michelin">](https://www.michelin.com/) [<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/idaml.jpg" width=200px alt="IDAML">](https://centreborelli.ens-paris-saclay.fr/fr/chaire-idaml) [<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/borelli.jpg" alt="Centre Borelli" width=150px>](https://centreborelli.ens-paris-saclay.fr/fr)
%package -n python3-adapt
Summary: Awesome Domain Adaptation Python Toolbox for Tensorflow and Scikit-learn
Provides: python-adapt
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-adapt
ADAPT is an open source library providing numerous tools to perform Transfer Learning and Domain Adaptation.
The purpose of the ADAPT library is to facilitate the access to transfer learning algorithms for a large public, including industrial players. ADAPT is specifically designed for [Scikit-learn](https://scikit-learn.org/stable/) and [Tensorflow](https://www.tensorflow.org/) users with a "user-friendly" approach. All objects in ADAPT implement the ***fit***, ***predict*** and ***score*** methods like any scikit-learn object. A very detailed documentation with several examples is provided:
<table>
<tr valign="top">
<td width="50%" >
<a href="https://adapt-python.github.io/adapt/examples/Sample_bias_example.html">
<br>
<b>Sample bias correction</b>
<br>
<br>
<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/sample_bias_corr_img.png">
</a>
</td>
<td width="50%">
<a href="https://adapt-python.github.io/adapt/examples/Flowers_example.html">
<br>
<b>Model-based Transfer</b>
<br>
<br>
<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/finetuned.png">
</a>
</td>
</tr>
<tr valign="top">
<td width="50%">
<a href="https://adapt-python.github.io/adapt/examples/Office_example.html">
<br>
<b>Deep Domain Adaptation</b>
<br>
<br>
<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/office_item.png">
</a>
</td>
<td width="50%">
<a href="https://adapt-python.github.io/adapt/examples/Multi_fidelity.html">
<br>
<b>Multi-Fidelity Transfer</b>
<br>
<br>
<img src="https://raw.githubusercontent.com/adapt-python/adapt/a490a5c4cefb80d6222bc831a8cc25b2f65221ce/docs/_static/images/multifidelity_setup.png">
</a>
</td>
</tr>
</table>
## Installation and Usage
This package is available on [Pypi](https://pypi.org/project/adapt) and can be installed with the following command line:
```
pip install adapt
```
The following dependencies are required and will be installed with the library:
- `numpy`
- `scipy`
- `tensorflow` (>= 2.0)
- `scikit-learn`
- `cvxopt`
If for some reason, these packages failed to install, you can do it manually with:
```
pip install numpy scipy tensorflow scikit-learn cvxopt
```
Finally import the module in your python scripts with:
```python
import adapt
```
A simple example of usage is given in the [Qick-Start](#Quick-Start) below.
## ADAPT Guideline
The transfer learning methods implemented in ADAPT can be seen as scikit-learn "Meta-estimators" or tensorflow "Custom Model":
<table>
<tr valign="top">
<td width="33%" >
<br>
<b>Adapt Estimator</b>
<br>
<br>
```python
AdaptEstimator(
estimator = """A scikit-learn estimator
(like Ridge(alpha=1.) for example)
or a Tensorflow Model""",
Xt = "The target input features",
yt = "The target output labels (if any)",
**params = "Hyper-parameters of the AdaptEstimator"
)
```
<td width="33%">
<br>
<b>Deep Adapt Estimator</b>
<br>
<br>
```python
DeepAdaptEstimator(
encoder = "A Tensorflow Model (if required)",
task = "A Tensorflow Model (if required)",
discriminator = "A Tensorflow Model (if required)",
Xt = "The target input features",
yt = "The target output labels (if any)",
**params = """Hyper-parameters of the DeepAdaptEstimator and
the compile and fit params (optimizer, epochs...)"""
)
```
</td>
</td>
<td width="33%">
<br>
<b>Scikit-learn Meta-Estimator</b>
<br>
<br>
```python
SklearnMetaEstimator(
base_estimator = """A scikit-learn estimator
(like Ridge(alpha=1.) for example)""",
**params = "Hyper-parameters of the SklearnMetaEstimator"
)
```
</td>
</tr>
</table>
As you can see, the main difference between ADAPT models and scikit-learn and tensorflow objects is the two arguments `Xt, yt` which refer to the target data. Indeed, in classical machine learning, one assumes that the fitted model is applied on data distributed according to the training distribution. This is why, in this setting, one performs cross-validation and splits uniformly the training set to evaluate a model.
In the transfer learning framework, however, one assumes that the target data (on which the model will be used at the end) are not distributed like the source training data. Moreover, one assumes that the target distribution can be estimated and compared to the training distribution. Either because a small sample of labeled target data `Xt, yt` is avalaible or because a large sample of unlabeled target data `Xt` is at one's disposal.
Thus, the transfer learning models from the ADAPT library can be seen as machine learning models that are fitted with a specific target in mind. This target is different but somewhat related to the training data. This is generally achieved by a transformation of the input features (see [feature-based transfer](https://adapt-python.github.io/adapt/contents.html#adapt-feature-based-feature-based-methods)) or by importance weighting (see [instance-based transfer](https://adapt-python.github.io/adapt/contents.html#adapt-instance-based)). In some cases, the training data are no more available but one aims at fine-tuning a pre-trained source model on a new target dataset (see [parameter-based transfer](https://adapt-python.github.io/adapt/contents.html#adapt-parameter-based)).
## Navigate into ADAPT
The ADAPT library proposes numerous transfer algorithms and it can be hard to know which algorithm is best suited for a particular problem. If you do not know which algorithm to choose, this [flowchart](https://adapt-python.github.io/adapt/map.html) may help you:
[<img src="https://github.com/adapt-python/adapt/raw/master/src_docs/_static/images/thumbnai_flowchart.PNG" width=30%>](https://adapt-python.github.io/adapt/map.html)
## Quick Start
Here is a simple usage example of the ADAPT library. This is a simulation of a 1D sample bias problem with binary classfication task. The source input data are distributed according to a Gaussian distribution centered in -1 with standard deviation of 2. The target data are drawn from Gaussian distribution centered in 1 with standard deviation of 2. The output labels are equal to 1 in the interval [-1, 1] and 0 elsewhere. We apply the transfer method [KMM](https://adapt-python.github.io/adapt/generated/adapt.instance_based.KMM.html) which is an unsupervised instance-based algortihm.
```python
# Import standard librairies
import numpy as np
from sklearn.linear_model import LogisticRegression
# Import KMM method form adapt.instance_based module
from adapt.instance_based import KMM
np.random.seed(0)
# Create source dataset (Xs ~ N(-1, 2))
# ys = 1 for ys in [-1, 1] else, ys = 0
Xs = np.random.randn(1000, 1)*2-1
ys = (Xs[:, 0] > -1.) & (Xs[:, 0] < 1.)
# Create target dataset (Xt ~ N(1, 2)), yt ~ ys
Xt = np.random.randn(1000, 1)*2+1
yt = (Xt[:, 0] > -1.) & (Xt[:, 0] < 1.)
# Instantiate and fit a source only model for comparison
src_only = LogisticRegression(penalty="none")
src_only.fit(Xs, ys)
# Instantiate a KMM model : estimator and target input
# data Xt are given as parameters with the kernel parameters
adapt_model = KMM(
estimator=LogisticRegression(penalty="none"),
Xt=Xt,
kernel="rbf", # Gaussian kernel
gamma=1., # Bandwidth of the kernel
verbose=0,
random_state=0
)
# Fit the model.
adapt_model.fit(Xs, ys);
# Get the score on target data
adapt_model.score(Xt, yt)
```
```python
>>> 0.574
```
| <img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/results_qs.png"> |
|:--:|
| **Quick-Start Plotting Results**. *The dotted and dashed lines are respectively the class separation of the "source only" and KMM models. Note that the predicted positive class is on the right of the dotted line for the "source only" model but on the left of the dashed line for KMM. (The code for plotting the Figure is available [here](https://adapt-python.github.io/adapt/examples/Quick_start.html))* |
## Contents
ADAPT package is divided in three sub-modules containing the following domain adaptation methods:
### Feature-based methods
<img src="https://raw.githubusercontent.com/adapt-python/adapt/a490a5c4cefb80d6222bc831a8cc25b2f65221ce/docs/_static/images/feature_based.png">
- [FA](https://adapt-python.github.io/adapt/generated/adapt.feature_based.FA.html) (*Frustratingly Easy Domain Adaptation*) [[paper]](https://arxiv.org/pdf/0907.1815.pdf)
- [SA](https://adapt-python.github.io/adapt/generated/adapt.feature_based.SA.html) (*Subspace Alignment*) [[paper]](https://arxiv.org/abs/1409.5241)
- [fMMD](https://adapt-python.github.io/adapt/generated/adapt.feature_based.SA.html) (*feature Selection with MMD*) [[paper]](https://www.cs.cmu.edu/afs/cs/Web/People/jgc/publication/Feature%20Selection%20for%20Transfer%20Learning.pdf)
- [DANN](https://adapt-python.github.io/adapt/generated/adapt.feature_based.DANN.html) (*Discriminative Adversarial Neural Network*) [[paper]](https://jmlr.org/papers/volume17/15-239/15-239.pdf)
- [ADDA](https://adapt-python.github.io/adapt/generated/adapt.feature_based.ADDA.html) (*Adversarial Discriminative Domain Adaptation*) [[paper]](https://arxiv.org/pdf/1702.05464.pdf)
- [CORAL](https://adapt-python.github.io/adapt/generated/adapt.feature_based.CORAL.html) (*CORrelation ALignment*) [[paper]](https://arxiv.org/pdf/1511.05547.pdf)
- [DeepCORAL](https://adapt-python.github.io/adapt/generated/adapt.feature_based.DeepCORAL.html) (*Deep CORrelation ALignment*) [[paper]](https://arxiv.org/pdf/1607.01719.pdf)
- [MCD](https://adapt-python.github.io/adapt/generated/adapt.feature_based.MCD.html) (*Maximum Classifier Discrepancy*) [[paper]](https://arxiv.org/pdf/1712.02560.pdf)
- [MDD](https://adapt-python.github.io/adapt/generated/adapt.feature_based.MDD.html) (*Margin Disparity Discrepancy*) [[paper]](https://arxiv.org/pdf/1904.05801.pdf)
- [WDGRL](https://adapt-python.github.io/adapt/generated/adapt.feature_based.WDGRL.html) (*Wasserstein Distance Guided Representation Learning*) [[paper]](https://arxiv.org/pdf/1707.01217.pdf)
- [CDAN](https://adapt-python.github.io/adapt/generated/adapt.feature_based.CDAN.html) (*Conditional Adversarial Domain Adaptation*) [[paper]](https://arxiv.org/pdf/1705.10667.pdf)
- [CCSA](https://adapt-python.github.io/adapt/generated/adapt.feature_based.CCSA.html) (*Classification and Contrastive Semantic Alignment*) [[paper]](https://arxiv.org/abs/1709.10190)
### Instance-based methods
<img src="https://raw.githubusercontent.com/adapt-python/adapt/a490a5c4cefb80d6222bc831a8cc25b2f65221ce/docs/_static/images/instance_based.png">
- [LDM](https://adapt-python.github.io/adapt/generated/adapt.instance_based.LDM.html) (*Linear Discrepancy Minimization*) [[paper]](https://arxiv.org/pdf/0902.3430.pdf)
- [KMM](https://adapt-python.github.io/adapt/generated/adapt.instance_based.KMM.html) (*Kernel Mean Matching*) [[paper]](https://proceedings.neurips.cc/paper/2006/file/a2186aa7c086b46ad4e8bf81e2a3a19b-Paper.pdf)
- [KLIEP](https://adapt-python.github.io/adapt/generated/adapt.instance_based.KLIEP.html) (*Kullback–Leibler Importance Estimation Procedure*) [[paper]](https://proceedings.neurips.cc/paper/2007/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper.pdf)
- [TrAdaBoost](https://adapt-python.github.io/adapt/generated/adapt.instance_based.TrAdaBoost.html) (*Transfer AdaBoost*) [[paper]](https://cse.hkust.edu.hk/~qyang/Docs/2007/tradaboost.pdf)
- [TrAdaBoostR2](https://adapt-python.github.io/adapt/generated/adapt.instance_based.TrAdaBoostR2.html) (*Transfer AdaBoost for Regression*) [[paper]](https://www.cs.utexas.edu/~dpardoe/papers/ICML10.pdf)
- [TwoStageTrAdaBoostR2](https://adapt-python.github.io/adapt/generated/adapt.instance_based.TwoStageTrAdaBoostR2.html) (*Two Stage Transfer AdaBoost for Regression*) [[paper]](https://www.cs.utexas.edu/~dpardoe/papers/ICML10.pdf)
- [NearestNeighborsWeighting](https://adapt-python.github.io/adapt/generated/adapt.instance_based.NearestNeighborsWeighting.html) (*Nearest Neighbors Weighting*) [[paper]](https://arxiv.org/pdf/2102.02291.pdf)
- [WANN](https://adapt-python.github.io/adapt/generated/adapt.instance_based.WANN.html) (*Weighting Adversarial Neural Network*) [[paper]](https://arxiv.org/pdf/2006.08251.pdf)
### Parameter-based methods
<img src="https://raw.githubusercontent.com/adapt-python/adapt/a490a5c4cefb80d6222bc831a8cc25b2f65221ce/docs/_static/images/parameter_based.png">
- [RegularTransferLR](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.RegularTransferLR.html) (*Regular Transfer with Linear Regression*) [[paper]](https://www.microsoft.com/en-us/research/wp-content/uploads/2004/07/2004-chelba-emnlp.pdf)
- [RegularTransferLC](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.RegularTransferLC.html) (*Regular Transfer with Linear Classification*) [[paper]](https://www.microsoft.com/en-us/research/wp-content/uploads/2004/07/2004-chelba-emnlp.pdf)
- [RegularTransferNN](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.RegularTransferNN.html) (*Regular Transfer with Neural Network*) [[paper]](https://hal.inria.fr/hal-00911179v1/document)
- [FineTuning](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.FineTuning.html) (*Fine-Tuning*) [[paper]](https://hal.inria.fr/hal-00911179v1/document)
- [TransferTreeClassifier](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.TransferTreeClassifier.html) (*Transfer Tree Classifier*) [[paper]](https://ieeexplore.ieee.org/document/8995296)
- [TransferTreeForest](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.TransferTreeForest.html) (*Transfer Tree Forest*) [[paper]](https://ieeexplore.ieee.org/document/8995296)
## Reference
If you use this library in your research, please cite ADAPT using the following reference: https://arxiv.org/pdf/2107.03049.pdf
```
@article{de2021adapt,
title={ADAPT: Awesome Domain Adaptation Python Toolbox},
author={de Mathelin, Antoine and Deheeger, Fran{\c{c}}ois and Richard, Guillaume and Mougeot, Mathilde and Vayatis, Nicolas},
journal={arXiv preprint arXiv:2107.03049},
year={2021}
}
```
## Acknowledgement
This work has been funded by Michelin and the Industrial Data Analytics and Machine Learning chair from ENS Paris-Saclay, Borelli center.
[<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/michelin.png" width=200px alt="Michelin">](https://www.michelin.com/) [<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/idaml.jpg" width=200px alt="IDAML">](https://centreborelli.ens-paris-saclay.fr/fr/chaire-idaml) [<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/borelli.jpg" alt="Centre Borelli" width=150px>](https://centreborelli.ens-paris-saclay.fr/fr)
%package help
Summary: Development documents and examples for adapt
Provides: python3-adapt-doc
%description help
ADAPT is an open source library providing numerous tools to perform Transfer Learning and Domain Adaptation.
The purpose of the ADAPT library is to facilitate the access to transfer learning algorithms for a large public, including industrial players. ADAPT is specifically designed for [Scikit-learn](https://scikit-learn.org/stable/) and [Tensorflow](https://www.tensorflow.org/) users with a "user-friendly" approach. All objects in ADAPT implement the ***fit***, ***predict*** and ***score*** methods like any scikit-learn object. A very detailed documentation with several examples is provided:
<table>
<tr valign="top">
<td width="50%" >
<a href="https://adapt-python.github.io/adapt/examples/Sample_bias_example.html">
<br>
<b>Sample bias correction</b>
<br>
<br>
<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/sample_bias_corr_img.png">
</a>
</td>
<td width="50%">
<a href="https://adapt-python.github.io/adapt/examples/Flowers_example.html">
<br>
<b>Model-based Transfer</b>
<br>
<br>
<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/finetuned.png">
</a>
</td>
</tr>
<tr valign="top">
<td width="50%">
<a href="https://adapt-python.github.io/adapt/examples/Office_example.html">
<br>
<b>Deep Domain Adaptation</b>
<br>
<br>
<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/office_item.png">
</a>
</td>
<td width="50%">
<a href="https://adapt-python.github.io/adapt/examples/Multi_fidelity.html">
<br>
<b>Multi-Fidelity Transfer</b>
<br>
<br>
<img src="https://raw.githubusercontent.com/adapt-python/adapt/a490a5c4cefb80d6222bc831a8cc25b2f65221ce/docs/_static/images/multifidelity_setup.png">
</a>
</td>
</tr>
</table>
## Installation and Usage
This package is available on [Pypi](https://pypi.org/project/adapt) and can be installed with the following command line:
```
pip install adapt
```
The following dependencies are required and will be installed with the library:
- `numpy`
- `scipy`
- `tensorflow` (>= 2.0)
- `scikit-learn`
- `cvxopt`
If for some reason, these packages failed to install, you can do it manually with:
```
pip install numpy scipy tensorflow scikit-learn cvxopt
```
Finally import the module in your python scripts with:
```python
import adapt
```
A simple example of usage is given in the [Qick-Start](#Quick-Start) below.
## ADAPT Guideline
The transfer learning methods implemented in ADAPT can be seen as scikit-learn "Meta-estimators" or tensorflow "Custom Model":
<table>
<tr valign="top">
<td width="33%" >
<br>
<b>Adapt Estimator</b>
<br>
<br>
```python
AdaptEstimator(
estimator = """A scikit-learn estimator
(like Ridge(alpha=1.) for example)
or a Tensorflow Model""",
Xt = "The target input features",
yt = "The target output labels (if any)",
**params = "Hyper-parameters of the AdaptEstimator"
)
```
<td width="33%">
<br>
<b>Deep Adapt Estimator</b>
<br>
<br>
```python
DeepAdaptEstimator(
encoder = "A Tensorflow Model (if required)",
task = "A Tensorflow Model (if required)",
discriminator = "A Tensorflow Model (if required)",
Xt = "The target input features",
yt = "The target output labels (if any)",
**params = """Hyper-parameters of the DeepAdaptEstimator and
the compile and fit params (optimizer, epochs...)"""
)
```
</td>
</td>
<td width="33%">
<br>
<b>Scikit-learn Meta-Estimator</b>
<br>
<br>
```python
SklearnMetaEstimator(
base_estimator = """A scikit-learn estimator
(like Ridge(alpha=1.) for example)""",
**params = "Hyper-parameters of the SklearnMetaEstimator"
)
```
</td>
</tr>
</table>
As you can see, the main difference between ADAPT models and scikit-learn and tensorflow objects is the two arguments `Xt, yt` which refer to the target data. Indeed, in classical machine learning, one assumes that the fitted model is applied on data distributed according to the training distribution. This is why, in this setting, one performs cross-validation and splits uniformly the training set to evaluate a model.
In the transfer learning framework, however, one assumes that the target data (on which the model will be used at the end) are not distributed like the source training data. Moreover, one assumes that the target distribution can be estimated and compared to the training distribution. Either because a small sample of labeled target data `Xt, yt` is avalaible or because a large sample of unlabeled target data `Xt` is at one's disposal.
Thus, the transfer learning models from the ADAPT library can be seen as machine learning models that are fitted with a specific target in mind. This target is different but somewhat related to the training data. This is generally achieved by a transformation of the input features (see [feature-based transfer](https://adapt-python.github.io/adapt/contents.html#adapt-feature-based-feature-based-methods)) or by importance weighting (see [instance-based transfer](https://adapt-python.github.io/adapt/contents.html#adapt-instance-based)). In some cases, the training data are no more available but one aims at fine-tuning a pre-trained source model on a new target dataset (see [parameter-based transfer](https://adapt-python.github.io/adapt/contents.html#adapt-parameter-based)).
## Navigate into ADAPT
The ADAPT library proposes numerous transfer algorithms and it can be hard to know which algorithm is best suited for a particular problem. If you do not know which algorithm to choose, this [flowchart](https://adapt-python.github.io/adapt/map.html) may help you:
[<img src="https://github.com/adapt-python/adapt/raw/master/src_docs/_static/images/thumbnai_flowchart.PNG" width=30%>](https://adapt-python.github.io/adapt/map.html)
## Quick Start
Here is a simple usage example of the ADAPT library. This is a simulation of a 1D sample bias problem with binary classfication task. The source input data are distributed according to a Gaussian distribution centered in -1 with standard deviation of 2. The target data are drawn from Gaussian distribution centered in 1 with standard deviation of 2. The output labels are equal to 1 in the interval [-1, 1] and 0 elsewhere. We apply the transfer method [KMM](https://adapt-python.github.io/adapt/generated/adapt.instance_based.KMM.html) which is an unsupervised instance-based algortihm.
```python
# Import standard librairies
import numpy as np
from sklearn.linear_model import LogisticRegression
# Import KMM method form adapt.instance_based module
from adapt.instance_based import KMM
np.random.seed(0)
# Create source dataset (Xs ~ N(-1, 2))
# ys = 1 for ys in [-1, 1] else, ys = 0
Xs = np.random.randn(1000, 1)*2-1
ys = (Xs[:, 0] > -1.) & (Xs[:, 0] < 1.)
# Create target dataset (Xt ~ N(1, 2)), yt ~ ys
Xt = np.random.randn(1000, 1)*2+1
yt = (Xt[:, 0] > -1.) & (Xt[:, 0] < 1.)
# Instantiate and fit a source only model for comparison
src_only = LogisticRegression(penalty="none")
src_only.fit(Xs, ys)
# Instantiate a KMM model : estimator and target input
# data Xt are given as parameters with the kernel parameters
adapt_model = KMM(
estimator=LogisticRegression(penalty="none"),
Xt=Xt,
kernel="rbf", # Gaussian kernel
gamma=1., # Bandwidth of the kernel
verbose=0,
random_state=0
)
# Fit the model.
adapt_model.fit(Xs, ys);
# Get the score on target data
adapt_model.score(Xt, yt)
```
```python
>>> 0.574
```
| <img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/results_qs.png"> |
|:--:|
| **Quick-Start Plotting Results**. *The dotted and dashed lines are respectively the class separation of the "source only" and KMM models. Note that the predicted positive class is on the right of the dotted line for the "source only" model but on the left of the dashed line for KMM. (The code for plotting the Figure is available [here](https://adapt-python.github.io/adapt/examples/Quick_start.html))* |
## Contents
ADAPT package is divided in three sub-modules containing the following domain adaptation methods:
### Feature-based methods
<img src="https://raw.githubusercontent.com/adapt-python/adapt/a490a5c4cefb80d6222bc831a8cc25b2f65221ce/docs/_static/images/feature_based.png">
- [FA](https://adapt-python.github.io/adapt/generated/adapt.feature_based.FA.html) (*Frustratingly Easy Domain Adaptation*) [[paper]](https://arxiv.org/pdf/0907.1815.pdf)
- [SA](https://adapt-python.github.io/adapt/generated/adapt.feature_based.SA.html) (*Subspace Alignment*) [[paper]](https://arxiv.org/abs/1409.5241)
- [fMMD](https://adapt-python.github.io/adapt/generated/adapt.feature_based.SA.html) (*feature Selection with MMD*) [[paper]](https://www.cs.cmu.edu/afs/cs/Web/People/jgc/publication/Feature%20Selection%20for%20Transfer%20Learning.pdf)
- [DANN](https://adapt-python.github.io/adapt/generated/adapt.feature_based.DANN.html) (*Discriminative Adversarial Neural Network*) [[paper]](https://jmlr.org/papers/volume17/15-239/15-239.pdf)
- [ADDA](https://adapt-python.github.io/adapt/generated/adapt.feature_based.ADDA.html) (*Adversarial Discriminative Domain Adaptation*) [[paper]](https://arxiv.org/pdf/1702.05464.pdf)
- [CORAL](https://adapt-python.github.io/adapt/generated/adapt.feature_based.CORAL.html) (*CORrelation ALignment*) [[paper]](https://arxiv.org/pdf/1511.05547.pdf)
- [DeepCORAL](https://adapt-python.github.io/adapt/generated/adapt.feature_based.DeepCORAL.html) (*Deep CORrelation ALignment*) [[paper]](https://arxiv.org/pdf/1607.01719.pdf)
- [MCD](https://adapt-python.github.io/adapt/generated/adapt.feature_based.MCD.html) (*Maximum Classifier Discrepancy*) [[paper]](https://arxiv.org/pdf/1712.02560.pdf)
- [MDD](https://adapt-python.github.io/adapt/generated/adapt.feature_based.MDD.html) (*Margin Disparity Discrepancy*) [[paper]](https://arxiv.org/pdf/1904.05801.pdf)
- [WDGRL](https://adapt-python.github.io/adapt/generated/adapt.feature_based.WDGRL.html) (*Wasserstein Distance Guided Representation Learning*) [[paper]](https://arxiv.org/pdf/1707.01217.pdf)
- [CDAN](https://adapt-python.github.io/adapt/generated/adapt.feature_based.CDAN.html) (*Conditional Adversarial Domain Adaptation*) [[paper]](https://arxiv.org/pdf/1705.10667.pdf)
- [CCSA](https://adapt-python.github.io/adapt/generated/adapt.feature_based.CCSA.html) (*Classification and Contrastive Semantic Alignment*) [[paper]](https://arxiv.org/abs/1709.10190)
### Instance-based methods
<img src="https://raw.githubusercontent.com/adapt-python/adapt/a490a5c4cefb80d6222bc831a8cc25b2f65221ce/docs/_static/images/instance_based.png">
- [LDM](https://adapt-python.github.io/adapt/generated/adapt.instance_based.LDM.html) (*Linear Discrepancy Minimization*) [[paper]](https://arxiv.org/pdf/0902.3430.pdf)
- [KMM](https://adapt-python.github.io/adapt/generated/adapt.instance_based.KMM.html) (*Kernel Mean Matching*) [[paper]](https://proceedings.neurips.cc/paper/2006/file/a2186aa7c086b46ad4e8bf81e2a3a19b-Paper.pdf)
- [KLIEP](https://adapt-python.github.io/adapt/generated/adapt.instance_based.KLIEP.html) (*Kullback–Leibler Importance Estimation Procedure*) [[paper]](https://proceedings.neurips.cc/paper/2007/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper.pdf)
- [TrAdaBoost](https://adapt-python.github.io/adapt/generated/adapt.instance_based.TrAdaBoost.html) (*Transfer AdaBoost*) [[paper]](https://cse.hkust.edu.hk/~qyang/Docs/2007/tradaboost.pdf)
- [TrAdaBoostR2](https://adapt-python.github.io/adapt/generated/adapt.instance_based.TrAdaBoostR2.html) (*Transfer AdaBoost for Regression*) [[paper]](https://www.cs.utexas.edu/~dpardoe/papers/ICML10.pdf)
- [TwoStageTrAdaBoostR2](https://adapt-python.github.io/adapt/generated/adapt.instance_based.TwoStageTrAdaBoostR2.html) (*Two Stage Transfer AdaBoost for Regression*) [[paper]](https://www.cs.utexas.edu/~dpardoe/papers/ICML10.pdf)
- [NearestNeighborsWeighting](https://adapt-python.github.io/adapt/generated/adapt.instance_based.NearestNeighborsWeighting.html) (*Nearest Neighbors Weighting*) [[paper]](https://arxiv.org/pdf/2102.02291.pdf)
- [WANN](https://adapt-python.github.io/adapt/generated/adapt.instance_based.WANN.html) (*Weighting Adversarial Neural Network*) [[paper]](https://arxiv.org/pdf/2006.08251.pdf)
### Parameter-based methods
<img src="https://raw.githubusercontent.com/adapt-python/adapt/a490a5c4cefb80d6222bc831a8cc25b2f65221ce/docs/_static/images/parameter_based.png">
- [RegularTransferLR](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.RegularTransferLR.html) (*Regular Transfer with Linear Regression*) [[paper]](https://www.microsoft.com/en-us/research/wp-content/uploads/2004/07/2004-chelba-emnlp.pdf)
- [RegularTransferLC](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.RegularTransferLC.html) (*Regular Transfer with Linear Classification*) [[paper]](https://www.microsoft.com/en-us/research/wp-content/uploads/2004/07/2004-chelba-emnlp.pdf)
- [RegularTransferNN](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.RegularTransferNN.html) (*Regular Transfer with Neural Network*) [[paper]](https://hal.inria.fr/hal-00911179v1/document)
- [FineTuning](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.FineTuning.html) (*Fine-Tuning*) [[paper]](https://hal.inria.fr/hal-00911179v1/document)
- [TransferTreeClassifier](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.TransferTreeClassifier.html) (*Transfer Tree Classifier*) [[paper]](https://ieeexplore.ieee.org/document/8995296)
- [TransferTreeForest](https://adapt-python.github.io/adapt/generated/adapt.parameter_based.TransferTreeForest.html) (*Transfer Tree Forest*) [[paper]](https://ieeexplore.ieee.org/document/8995296)
## Reference
If you use this library in your research, please cite ADAPT using the following reference: https://arxiv.org/pdf/2107.03049.pdf
```
@article{de2021adapt,
title={ADAPT: Awesome Domain Adaptation Python Toolbox},
author={de Mathelin, Antoine and Deheeger, Fran{\c{c}}ois and Richard, Guillaume and Mougeot, Mathilde and Vayatis, Nicolas},
journal={arXiv preprint arXiv:2107.03049},
year={2021}
}
```
## Acknowledgement
This work has been funded by Michelin and the Industrial Data Analytics and Machine Learning chair from ENS Paris-Saclay, Borelli center.
[<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/michelin.png" width=200px alt="Michelin">](https://www.michelin.com/) [<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/idaml.jpg" width=200px alt="IDAML">](https://centreborelli.ens-paris-saclay.fr/fr/chaire-idaml) [<img src="https://github.com/adapt-python/adapt/raw/41c13055facc0733faf49c4e3979709e82be10e5/docs/_static/images/borelli.jpg" alt="Centre Borelli" width=150px>](https://centreborelli.ens-paris-saclay.fr/fr)
%prep
%autosetup -n adapt-0.4.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-adapt -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Mar 07 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.2-1
- Package Spec generated
|