summaryrefslogtreecommitdiff
path: root/python-adptc-lib.spec
blob: f56a2489dfcc518aac3f254cc2fd6e1b9d5ddcba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
%global _empty_manifest_terminate_build 0
Name:		python-ADPTC-LIB
Version:	0.0.7
Release:	1
Summary:	自适应密度峰值树聚类(Adaptive Density Peak Tree Clustering)
License:	MIT License
URL:		https://pypi.org/project/ADPTC-LIB/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/0d/20/58fd440c18463dc9bb222d4e6af39b8fd11fb91768230058407e2674e9f8/ADPTC_LIB-0.0.7.tar.gz
BuildArch:	noarch


%description
<!--
 * @Description: 
 * @Author: SongJ
 * @Date: 2020-12-29 13:52:28
 * @LastEditTime: 2021-04-12 10:44:01
 * @LastEditors: SongJ
-->

## 自适应密度峰值树聚类(Adaptive Density Peak Tree Clustering)
本算法是在快速搜索与发现密度峰值聚类算法(Clustering by fast search and find of density peaks)CFSFDP的基础上进行改进的成果,主要解决的问题有:
- 手动选择聚类中心
- 单簇多密度峰值导致类簇误分
- 面向时空数据聚类时,无法顾及时空耦合
### 原理:
通过CFSFDP算法的核心概念:局部密度和斥群值,构建密度峰值树,通过直达点、连通点和切割点分离子树,达到类簇划分的目的。

<img src="https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210616098.png" alt="image-20210409210616098" style="zoom: 80%;" />

![image-20210409210731545](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210731545.png)

![image-20210409212843640](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409212843640.png)

### 使用方法:
#### 1. 安装:

```python
pip install ADPTC-LIB
```

#### 2. 空间数据聚类:

```python
import numpy as np
from ADPTC_LIB.cluster import ADPTC
from ADPTC_LIB import visual
X = np.loadtxt(r"../test_data/Aggregation.txt", delimiter="\t")
X = X[:,[0,1]]
atdpc_obj = ADPTC(X)
atdpc_obj.clustering(2)
visual.show_result(atdpc_obj.labels,X,np.array(list(atdpc_obj.core_points)))
```

![image-20210410095608378](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210410095608378.png)

#### 3. 空间属性数据聚类:

```python
from ADPTC_LIB.cluster import ADPTC
from ADPTC_LIB import visual
import xarray as xr
import os
import numpy as np
filePath = os.path.join(r'Z:\regions_daily_010deg\\05\\2013.nc')
dataset = xr.open_dataset(filePath)
pre_ds = dataset['precipitation']
lon = pre_ds.lon
lat = pre_ds.lat
lon_range = lon[(lon>-30)&(lon<70)]
lat_range = lat[(lat>30)&(lat<90)]
var = pre_ds.sel(lon=lon_range,lat = lat_range)
var = var.resample(time='1M',skipna=True).sum()
var_t = var.sel(time=var.time[0])
reduced = var_t.coarsen(lon=5).mean().coarsen(lat=5).mean()
data_nc = np.array(reduced)
spatial_eps=4
attr_eps=8
density_metric='gauss'
spre = ADPTC(data_nc)
spre.spacial_clustering_raster(spatial_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
visual.show_result_2d(reduced,spre.labels)
```

![image-20210410104300578](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210410104300578.png)

#### 4.时空属性聚类:

```python
from ADPTC_LIB.cluster import ADPTC
from ADPTC_LIB import visual
import xarray as xr
import numpy as np
temp= xr.open_dataset(r'Z:\MSWX\temp\2020.nc')
temp_2020 = temp['air_temperature']
lon = temp_2020.lon
lat = temp_2020.lat
time = temp_2020.time
lon_range = lon[(lon>70)&(lon<140)]
lat_range = lat[(lat>15)&(lat<55)]
var = temp_2020.sel(lon=lon_range,lat = lat_range)
reduced = var.coarsen(lon=5).mean().coarsen(lat=5).mean()
data_nc = np.array(reduced)
s_eps = 5
t_eps = 1
attr_eps = 2.5
density_metric='gauss'
spre = ADPTC(data_nc)
spre.st_clustering_raster(s_eps,t_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
visual.show_result_3d(reduced,spre,[70, 140, 15, 50],[0,12],21)
```

![image-20210412095947596](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210412095947596.png)

%package -n python3-ADPTC-LIB
Summary:	自适应密度峰值树聚类(Adaptive Density Peak Tree Clustering)
Provides:	python-ADPTC-LIB
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-ADPTC-LIB
<!--
 * @Description: 
 * @Author: SongJ
 * @Date: 2020-12-29 13:52:28
 * @LastEditTime: 2021-04-12 10:44:01
 * @LastEditors: SongJ
-->

## 自适应密度峰值树聚类(Adaptive Density Peak Tree Clustering)
本算法是在快速搜索与发现密度峰值聚类算法(Clustering by fast search and find of density peaks)CFSFDP的基础上进行改进的成果,主要解决的问题有:
- 手动选择聚类中心
- 单簇多密度峰值导致类簇误分
- 面向时空数据聚类时,无法顾及时空耦合
### 原理:
通过CFSFDP算法的核心概念:局部密度和斥群值,构建密度峰值树,通过直达点、连通点和切割点分离子树,达到类簇划分的目的。

<img src="https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210616098.png" alt="image-20210409210616098" style="zoom: 80%;" />

![image-20210409210731545](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210731545.png)

![image-20210409212843640](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409212843640.png)

### 使用方法:
#### 1. 安装:

```python
pip install ADPTC-LIB
```

#### 2. 空间数据聚类:

```python
import numpy as np
from ADPTC_LIB.cluster import ADPTC
from ADPTC_LIB import visual
X = np.loadtxt(r"../test_data/Aggregation.txt", delimiter="\t")
X = X[:,[0,1]]
atdpc_obj = ADPTC(X)
atdpc_obj.clustering(2)
visual.show_result(atdpc_obj.labels,X,np.array(list(atdpc_obj.core_points)))
```

![image-20210410095608378](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210410095608378.png)

#### 3. 空间属性数据聚类:

```python
from ADPTC_LIB.cluster import ADPTC
from ADPTC_LIB import visual
import xarray as xr
import os
import numpy as np
filePath = os.path.join(r'Z:\regions_daily_010deg\\05\\2013.nc')
dataset = xr.open_dataset(filePath)
pre_ds = dataset['precipitation']
lon = pre_ds.lon
lat = pre_ds.lat
lon_range = lon[(lon>-30)&(lon<70)]
lat_range = lat[(lat>30)&(lat<90)]
var = pre_ds.sel(lon=lon_range,lat = lat_range)
var = var.resample(time='1M',skipna=True).sum()
var_t = var.sel(time=var.time[0])
reduced = var_t.coarsen(lon=5).mean().coarsen(lat=5).mean()
data_nc = np.array(reduced)
spatial_eps=4
attr_eps=8
density_metric='gauss'
spre = ADPTC(data_nc)
spre.spacial_clustering_raster(spatial_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
visual.show_result_2d(reduced,spre.labels)
```

![image-20210410104300578](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210410104300578.png)

#### 4.时空属性聚类:

```python
from ADPTC_LIB.cluster import ADPTC
from ADPTC_LIB import visual
import xarray as xr
import numpy as np
temp= xr.open_dataset(r'Z:\MSWX\temp\2020.nc')
temp_2020 = temp['air_temperature']
lon = temp_2020.lon
lat = temp_2020.lat
time = temp_2020.time
lon_range = lon[(lon>70)&(lon<140)]
lat_range = lat[(lat>15)&(lat<55)]
var = temp_2020.sel(lon=lon_range,lat = lat_range)
reduced = var.coarsen(lon=5).mean().coarsen(lat=5).mean()
data_nc = np.array(reduced)
s_eps = 5
t_eps = 1
attr_eps = 2.5
density_metric='gauss'
spre = ADPTC(data_nc)
spre.st_clustering_raster(s_eps,t_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
visual.show_result_3d(reduced,spre,[70, 140, 15, 50],[0,12],21)
```

![image-20210412095947596](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210412095947596.png)

%package help
Summary:	Development documents and examples for ADPTC-LIB
Provides:	python3-ADPTC-LIB-doc
%description help
<!--
 * @Description: 
 * @Author: SongJ
 * @Date: 2020-12-29 13:52:28
 * @LastEditTime: 2021-04-12 10:44:01
 * @LastEditors: SongJ
-->

## 自适应密度峰值树聚类(Adaptive Density Peak Tree Clustering)
本算法是在快速搜索与发现密度峰值聚类算法(Clustering by fast search and find of density peaks)CFSFDP的基础上进行改进的成果,主要解决的问题有:
- 手动选择聚类中心
- 单簇多密度峰值导致类簇误分
- 面向时空数据聚类时,无法顾及时空耦合
### 原理:
通过CFSFDP算法的核心概念:局部密度和斥群值,构建密度峰值树,通过直达点、连通点和切割点分离子树,达到类簇划分的目的。

<img src="https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210616098.png" alt="image-20210409210616098" style="zoom: 80%;" />

![image-20210409210731545](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409210731545.png)

![image-20210409212843640](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210409212843640.png)

### 使用方法:
#### 1. 安装:

```python
pip install ADPTC-LIB
```

#### 2. 空间数据聚类:

```python
import numpy as np
from ADPTC_LIB.cluster import ADPTC
from ADPTC_LIB import visual
X = np.loadtxt(r"../test_data/Aggregation.txt", delimiter="\t")
X = X[:,[0,1]]
atdpc_obj = ADPTC(X)
atdpc_obj.clustering(2)
visual.show_result(atdpc_obj.labels,X,np.array(list(atdpc_obj.core_points)))
```

![image-20210410095608378](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210410095608378.png)

#### 3. 空间属性数据聚类:

```python
from ADPTC_LIB.cluster import ADPTC
from ADPTC_LIB import visual
import xarray as xr
import os
import numpy as np
filePath = os.path.join(r'Z:\regions_daily_010deg\\05\\2013.nc')
dataset = xr.open_dataset(filePath)
pre_ds = dataset['precipitation']
lon = pre_ds.lon
lat = pre_ds.lat
lon_range = lon[(lon>-30)&(lon<70)]
lat_range = lat[(lat>30)&(lat<90)]
var = pre_ds.sel(lon=lon_range,lat = lat_range)
var = var.resample(time='1M',skipna=True).sum()
var_t = var.sel(time=var.time[0])
reduced = var_t.coarsen(lon=5).mean().coarsen(lat=5).mean()
data_nc = np.array(reduced)
spatial_eps=4
attr_eps=8
density_metric='gauss'
spre = ADPTC(data_nc)
spre.spacial_clustering_raster(spatial_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
visual.show_result_2d(reduced,spre.labels)
```

![image-20210410104300578](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210410104300578.png)

#### 4.时空属性聚类:

```python
from ADPTC_LIB.cluster import ADPTC
from ADPTC_LIB import visual
import xarray as xr
import numpy as np
temp= xr.open_dataset(r'Z:\MSWX\temp\2020.nc')
temp_2020 = temp['air_temperature']
lon = temp_2020.lon
lat = temp_2020.lat
time = temp_2020.time
lon_range = lon[(lon>70)&(lon<140)]
lat_range = lat[(lat>15)&(lat<55)]
var = temp_2020.sel(lon=lon_range,lat = lat_range)
reduced = var.coarsen(lon=5).mean().coarsen(lat=5).mean()
data_nc = np.array(reduced)
s_eps = 5
t_eps = 1
attr_eps = 2.5
density_metric='gauss'
spre = ADPTC(data_nc)
spre.st_clustering_raster(s_eps,t_eps,attr_eps,density_metric,knn_num=100,leaf_size=3000,connect_eps=0.9)
visual.show_result_3d(reduced,spre,[70, 140, 15, 50],[0,12],21)
```

![image-20210412095947596](https://cdn.jsdelivr.net/gh/SuilandCoder/PicStorage//img/image-20210412095947596.png)

%prep
%autosetup -n ADPTC-LIB-0.0.7

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-ADPTC-LIB -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.7-1
- Package Spec generated