summaryrefslogtreecommitdiff
path: root/python-ahocorasick-rs.spec
blob: d70aa69f9e6b0ee3960173563a7f6ddea50bd1e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
%global _empty_manifest_terminate_build 0
Name:		python-ahocorasick-rs
Version:	0.14.0
Release:	1
Summary:	Search a string for multiple substrings at once
License:	Apache 2.0
URL:		https://github.com/G-Research/ahocorasick_rs
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/00/3b/a44d5ff4347bffa859f92a5cc7137e49658cf1c5d37c3b69e5413c135023/ahocorasick_rs-0.14.0.tar.gz


%description
# ahocorasick_rs: Quickly search for multiple substrings at once

`ahocorasick_rs` allows you to search for multiple substrings ("patterns") in a given string ("haystack") using variations of the [Aho-Corasick algorithm](https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm).

In particular, it's implemented as a wrapper of the Rust [`aho-corasick`](https://docs.rs/aho-corasick/) library, and provides a faster alternative to the [`pyahocorasick`](https://pyahocorasick.readthedocs.io/) library.

The specific use case is searching for large numbers of patterns (in the thousands) where the Rust library's DFA-based state machine allows for faster matching.

Found any problems or have any questions? [File an issue on the GitHub project](https://github.com/G-Research/ahocorasick_rs).

* [Quickstart](#quickstart)
* [Additional configuration](#configuration)
* [Implementation details](#implementation)
* [Benchmarks](#benchmarks)

## Quickstart <a name="quickstart"></a>

The `ahocorasick_rs` library allows you to search for multiple strings ("patterns") within a haystack.
For example, let's install the library:

```shell-session
$ pip install ahocorasick-rs
```

Then, we can construct a `AhoCorasick` object:

```python
>>> import ahocorasick_rs
>>> patterns = ["hello", "world", "fish"]
>>> haystack = "this is my first hello world. hello!"
>>> ac = ahocorasick_rs.AhoCorasick(patterns)
```

`AhoCorasick.find_matches_as_indexes()` returns a list of tuples, each tuple being:

1. The index of the found pattern inside the list of patterns.
2. The start index of the pattern inside the haystack.
3. The end index of the pattern inside the haystack.

```python
>>> ac.find_matches_as_indexes(haystack)
[(0, 17, 22), (1, 23, 28), (0, 30, 35)]
>>> patterns[0], patterns[1], patterns[0]
('hello', 'world', 'hello')
>>> haystack[17:22], haystack[23:28], haystack[30:35]
('hello', 'world', 'hello')
```

`find_matches_as_strings()` returns a list of found patterns:

```python
>>> ac.find_matches_as_strings(haystack)
['hello', 'world', 'hello']
```

## Additional configuration <a name="configuration"></a>

### Match kind

There are three ways you can configure matching in cases where multiple patterns overlap.
For a more in-depth explanation, see the [underlying Rust library's documentation of matching](https://docs.rs/aho-corasick/latest/aho_corasick/enum.MatchKind.html).

Assume we have this starting point:

```python
>>> from ahocorasick_rs import AhoCorasick, MatchKind
```

#### `Standard` (the default)

This returns the pattern that matches first, semantically-speaking.
This is the default matching pattern.

```python
>>> ac AhoCorasick(["disco", "disc", "discontent"])
>>> ac.find_matches_as_strings("discontent")
['disc']
>>> ac = AhoCorasick(["b", "abcd"])
>>> ac.find_matches_as_strings("abcdef")
['b']
```

In this case `disc` will match before `disco` or `discontent`.

Similarly, `b` will match before `abcd` because it ends earlier in the haystack than `abcd` does:

```python
>>> ac = AhoCorasick(["b", "abcd"])
>>> ac.find_matches_as_strings("abcdef")
['b']
```

#### `LeftmostFirst`

This returns the leftmost-in-the-haystack matching pattern that appears first in _the list of given patterns_.
That means the order of patterns makes a difference:

```python
>>> ac = AhoCorasick(["disco", "disc"], matchkind=MatchKind.LeftmostFirst)
>>> ac.find_matches_as_strings("discontent")
['disco']
>>> ac = AhoCorasick(["disc", "disco"], matchkind=MatchKind.LeftmostFirst)
['disc']
```

Here we see `abcd` matched first, because it starts before `b`:

```python
>>> ac = AhoCorasick(["b", "abcd"], matchkind=MatchKind.LeftmostFirst)
>>> ac.find_matches_as_strings("abcdef")
['abcd']
```
##### `LeftmostLongest`

This returns the leftmost-in-the-haystack matching pattern that is longest:

```python
>>> ac = AhoCorasick(["disco", "disc", "discontent"], matchkind=MatchKind.LeftmostLongest)
>>> ac.find_matches_as_strings("discontent")
['discontent']
```

### Overlapping matches

You can get all overlapping matches, instead of just one of them, but only if you stick to the default matchkind, `MatchKind.Standard`:

```python
>>> from ahocorasick_rs import AhoCorasick
>>> patterns = ["winter", "onte", "disco", "discontent"]
>>> ac = AhoCorasick(patterns)
>>> ac.find_matches_as_strings("discontent", overlapping=True)
['disco', 'onte', 'discontent']
```

### Trading memory for speed

If you use ``find_matches_as_strings()``, there are two ways strings can be constructed: from the haystack, or by caching the patterns on the object.
The former takes more work, the latter uses more memory if the patterns would otherwise have been garbage-collected.
You can control the behavior by using the `store_patterns` keyword argument to `AhoCorasick()`.

* ``AhoCorasick(..., store_patterns=None)``: The default.
  Use a heuristic (currently, whether the total of pattern string lengths is less than 4096 characters) to decide whether to store patterns or not.
* ``AhoCorasick(..., store_patterns=True)``: Keep references to the patterns, potentially speeding up ``find_matches_as_strings()`` at the cost of using more memory.
  If this uses large amounts of memory this might actually slow things down due to pressure on the CPU memory cache, and/or the performance benefit might be overwhelmed by the algorithm's search time.
* ``AhoCorasick(..., store_patterns=False)``: Don't keep references to the patterns, saving some memory but potentially slowing down ``find_matches_as_strings()``, especially when there are only a small number of patterns and you are searching a small haystack.

### Algorithm implementations: trading construction speed, memory, and performance

You can choose the type of underlying automaton to use, with different performance tradeoffs.

The underlying Rust library supports [four choices](https://docs.rs/aho-corasick/latest/aho_corasick/struct.AhoCorasickBuilder.html#method.kind), which are exposed:

* `None` uses a heuristic to choose the "best" Aho-Corasick implementation for the given patterns.
* `Implementation.NoncontiguousNFA`: A noncontiguous NFA is the fastest to be built, has moderate memory usage and is typically the slowest to execute a search.
* `Implementation.ContiguousNFA`: A contiguous NFA is a little slower to build than a noncontiguous NFA, has excellent memory usage and is typically a little slower than a DFA for a search.
* `Implementation.DFA`: A DFA is very slow to build, uses exorbitant amounts of memory, but will typically execute searches the fastest.

The default choice is `Implementation.DFA` since expensive setup compensated by fast batch operations is the standard Python tradeoff.

```python
>>> from ahocorasick_rs import AhoCorasick, Implementation
>>> ac = AhoCorasick(["disco", "disc"], implementation=Implementation.NoncontiguousNFA)
```

## Implementation details <a name="implementation"></a>

* Matching releases the GIL, to enable concurrency.
* Not all features from the underlying library are exposed; if you would like additional features, please [file an issue](https://github.com/g-research/ahocorasick_rs/issues/new) or submit a PR.

## Benchmarks <a name="benchmarks"></a>

As with any benchmark, real-world results will differ based on your particular situation.
If performance is important to your application, measure the alternatives yourself!

### Longer strings and many patterns

This benchmark matches ~4,000 patterns against lines of text that are ~700 characters long.
Each line matches either zero (90%) or one pattern (10%).

Higher is better; `ahocorasick_rs` is much faster in both cases.

| `find_matches_as_strings` or equivalent | Operations per second |
|-----------------------------------------|---------------------:|
| `ahocorasick_rs` longest matching       |            `436,000` |
| `pyahocorasick` longest matching        |             `65,000` |
| `ahocorasick_rs` overlapping matching   |            `329,000` |
| `pyahocorasick` overlapping matching    |             `76,000` |

### Shorter strings and few patterns

This benchmarks matches ~10 patterns against lines of text that are ~70 characters long.
Each line matches ~5 patterns.

Higher is better; again, `ahocorasick_rs` is faster for both, though with a smaller margin.

| `find_matches_as_strings` or equivalent | Operations per second   |
|-----------------------------------------|------------------------:|
| `ahocorasick_rs` longest matching       |             `1,930,000` |
| `pyahocorasick` longest matching        |             `1,120,000` |
| `ahocorasick_rs` overlapping matching   |             `1,250,000` |
| `pyahocorasick` overlapping matching    |               `880,000` |




%package -n python3-ahocorasick-rs
Summary:	Search a string for multiple substrings at once
Provides:	python-ahocorasick-rs
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-ahocorasick-rs
# ahocorasick_rs: Quickly search for multiple substrings at once

`ahocorasick_rs` allows you to search for multiple substrings ("patterns") in a given string ("haystack") using variations of the [Aho-Corasick algorithm](https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm).

In particular, it's implemented as a wrapper of the Rust [`aho-corasick`](https://docs.rs/aho-corasick/) library, and provides a faster alternative to the [`pyahocorasick`](https://pyahocorasick.readthedocs.io/) library.

The specific use case is searching for large numbers of patterns (in the thousands) where the Rust library's DFA-based state machine allows for faster matching.

Found any problems or have any questions? [File an issue on the GitHub project](https://github.com/G-Research/ahocorasick_rs).

* [Quickstart](#quickstart)
* [Additional configuration](#configuration)
* [Implementation details](#implementation)
* [Benchmarks](#benchmarks)

## Quickstart <a name="quickstart"></a>

The `ahocorasick_rs` library allows you to search for multiple strings ("patterns") within a haystack.
For example, let's install the library:

```shell-session
$ pip install ahocorasick-rs
```

Then, we can construct a `AhoCorasick` object:

```python
>>> import ahocorasick_rs
>>> patterns = ["hello", "world", "fish"]
>>> haystack = "this is my first hello world. hello!"
>>> ac = ahocorasick_rs.AhoCorasick(patterns)
```

`AhoCorasick.find_matches_as_indexes()` returns a list of tuples, each tuple being:

1. The index of the found pattern inside the list of patterns.
2. The start index of the pattern inside the haystack.
3. The end index of the pattern inside the haystack.

```python
>>> ac.find_matches_as_indexes(haystack)
[(0, 17, 22), (1, 23, 28), (0, 30, 35)]
>>> patterns[0], patterns[1], patterns[0]
('hello', 'world', 'hello')
>>> haystack[17:22], haystack[23:28], haystack[30:35]
('hello', 'world', 'hello')
```

`find_matches_as_strings()` returns a list of found patterns:

```python
>>> ac.find_matches_as_strings(haystack)
['hello', 'world', 'hello']
```

## Additional configuration <a name="configuration"></a>

### Match kind

There are three ways you can configure matching in cases where multiple patterns overlap.
For a more in-depth explanation, see the [underlying Rust library's documentation of matching](https://docs.rs/aho-corasick/latest/aho_corasick/enum.MatchKind.html).

Assume we have this starting point:

```python
>>> from ahocorasick_rs import AhoCorasick, MatchKind
```

#### `Standard` (the default)

This returns the pattern that matches first, semantically-speaking.
This is the default matching pattern.

```python
>>> ac AhoCorasick(["disco", "disc", "discontent"])
>>> ac.find_matches_as_strings("discontent")
['disc']
>>> ac = AhoCorasick(["b", "abcd"])
>>> ac.find_matches_as_strings("abcdef")
['b']
```

In this case `disc` will match before `disco` or `discontent`.

Similarly, `b` will match before `abcd` because it ends earlier in the haystack than `abcd` does:

```python
>>> ac = AhoCorasick(["b", "abcd"])
>>> ac.find_matches_as_strings("abcdef")
['b']
```

#### `LeftmostFirst`

This returns the leftmost-in-the-haystack matching pattern that appears first in _the list of given patterns_.
That means the order of patterns makes a difference:

```python
>>> ac = AhoCorasick(["disco", "disc"], matchkind=MatchKind.LeftmostFirst)
>>> ac.find_matches_as_strings("discontent")
['disco']
>>> ac = AhoCorasick(["disc", "disco"], matchkind=MatchKind.LeftmostFirst)
['disc']
```

Here we see `abcd` matched first, because it starts before `b`:

```python
>>> ac = AhoCorasick(["b", "abcd"], matchkind=MatchKind.LeftmostFirst)
>>> ac.find_matches_as_strings("abcdef")
['abcd']
```
##### `LeftmostLongest`

This returns the leftmost-in-the-haystack matching pattern that is longest:

```python
>>> ac = AhoCorasick(["disco", "disc", "discontent"], matchkind=MatchKind.LeftmostLongest)
>>> ac.find_matches_as_strings("discontent")
['discontent']
```

### Overlapping matches

You can get all overlapping matches, instead of just one of them, but only if you stick to the default matchkind, `MatchKind.Standard`:

```python
>>> from ahocorasick_rs import AhoCorasick
>>> patterns = ["winter", "onte", "disco", "discontent"]
>>> ac = AhoCorasick(patterns)
>>> ac.find_matches_as_strings("discontent", overlapping=True)
['disco', 'onte', 'discontent']
```

### Trading memory for speed

If you use ``find_matches_as_strings()``, there are two ways strings can be constructed: from the haystack, or by caching the patterns on the object.
The former takes more work, the latter uses more memory if the patterns would otherwise have been garbage-collected.
You can control the behavior by using the `store_patterns` keyword argument to `AhoCorasick()`.

* ``AhoCorasick(..., store_patterns=None)``: The default.
  Use a heuristic (currently, whether the total of pattern string lengths is less than 4096 characters) to decide whether to store patterns or not.
* ``AhoCorasick(..., store_patterns=True)``: Keep references to the patterns, potentially speeding up ``find_matches_as_strings()`` at the cost of using more memory.
  If this uses large amounts of memory this might actually slow things down due to pressure on the CPU memory cache, and/or the performance benefit might be overwhelmed by the algorithm's search time.
* ``AhoCorasick(..., store_patterns=False)``: Don't keep references to the patterns, saving some memory but potentially slowing down ``find_matches_as_strings()``, especially when there are only a small number of patterns and you are searching a small haystack.

### Algorithm implementations: trading construction speed, memory, and performance

You can choose the type of underlying automaton to use, with different performance tradeoffs.

The underlying Rust library supports [four choices](https://docs.rs/aho-corasick/latest/aho_corasick/struct.AhoCorasickBuilder.html#method.kind), which are exposed:

* `None` uses a heuristic to choose the "best" Aho-Corasick implementation for the given patterns.
* `Implementation.NoncontiguousNFA`: A noncontiguous NFA is the fastest to be built, has moderate memory usage and is typically the slowest to execute a search.
* `Implementation.ContiguousNFA`: A contiguous NFA is a little slower to build than a noncontiguous NFA, has excellent memory usage and is typically a little slower than a DFA for a search.
* `Implementation.DFA`: A DFA is very slow to build, uses exorbitant amounts of memory, but will typically execute searches the fastest.

The default choice is `Implementation.DFA` since expensive setup compensated by fast batch operations is the standard Python tradeoff.

```python
>>> from ahocorasick_rs import AhoCorasick, Implementation
>>> ac = AhoCorasick(["disco", "disc"], implementation=Implementation.NoncontiguousNFA)
```

## Implementation details <a name="implementation"></a>

* Matching releases the GIL, to enable concurrency.
* Not all features from the underlying library are exposed; if you would like additional features, please [file an issue](https://github.com/g-research/ahocorasick_rs/issues/new) or submit a PR.

## Benchmarks <a name="benchmarks"></a>

As with any benchmark, real-world results will differ based on your particular situation.
If performance is important to your application, measure the alternatives yourself!

### Longer strings and many patterns

This benchmark matches ~4,000 patterns against lines of text that are ~700 characters long.
Each line matches either zero (90%) or one pattern (10%).

Higher is better; `ahocorasick_rs` is much faster in both cases.

| `find_matches_as_strings` or equivalent | Operations per second |
|-----------------------------------------|---------------------:|
| `ahocorasick_rs` longest matching       |            `436,000` |
| `pyahocorasick` longest matching        |             `65,000` |
| `ahocorasick_rs` overlapping matching   |            `329,000` |
| `pyahocorasick` overlapping matching    |             `76,000` |

### Shorter strings and few patterns

This benchmarks matches ~10 patterns against lines of text that are ~70 characters long.
Each line matches ~5 patterns.

Higher is better; again, `ahocorasick_rs` is faster for both, though with a smaller margin.

| `find_matches_as_strings` or equivalent | Operations per second   |
|-----------------------------------------|------------------------:|
| `ahocorasick_rs` longest matching       |             `1,930,000` |
| `pyahocorasick` longest matching        |             `1,120,000` |
| `ahocorasick_rs` overlapping matching   |             `1,250,000` |
| `pyahocorasick` overlapping matching    |               `880,000` |




%package help
Summary:	Development documents and examples for ahocorasick-rs
Provides:	python3-ahocorasick-rs-doc
%description help
# ahocorasick_rs: Quickly search for multiple substrings at once

`ahocorasick_rs` allows you to search for multiple substrings ("patterns") in a given string ("haystack") using variations of the [Aho-Corasick algorithm](https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm).

In particular, it's implemented as a wrapper of the Rust [`aho-corasick`](https://docs.rs/aho-corasick/) library, and provides a faster alternative to the [`pyahocorasick`](https://pyahocorasick.readthedocs.io/) library.

The specific use case is searching for large numbers of patterns (in the thousands) where the Rust library's DFA-based state machine allows for faster matching.

Found any problems or have any questions? [File an issue on the GitHub project](https://github.com/G-Research/ahocorasick_rs).

* [Quickstart](#quickstart)
* [Additional configuration](#configuration)
* [Implementation details](#implementation)
* [Benchmarks](#benchmarks)

## Quickstart <a name="quickstart"></a>

The `ahocorasick_rs` library allows you to search for multiple strings ("patterns") within a haystack.
For example, let's install the library:

```shell-session
$ pip install ahocorasick-rs
```

Then, we can construct a `AhoCorasick` object:

```python
>>> import ahocorasick_rs
>>> patterns = ["hello", "world", "fish"]
>>> haystack = "this is my first hello world. hello!"
>>> ac = ahocorasick_rs.AhoCorasick(patterns)
```

`AhoCorasick.find_matches_as_indexes()` returns a list of tuples, each tuple being:

1. The index of the found pattern inside the list of patterns.
2. The start index of the pattern inside the haystack.
3. The end index of the pattern inside the haystack.

```python
>>> ac.find_matches_as_indexes(haystack)
[(0, 17, 22), (1, 23, 28), (0, 30, 35)]
>>> patterns[0], patterns[1], patterns[0]
('hello', 'world', 'hello')
>>> haystack[17:22], haystack[23:28], haystack[30:35]
('hello', 'world', 'hello')
```

`find_matches_as_strings()` returns a list of found patterns:

```python
>>> ac.find_matches_as_strings(haystack)
['hello', 'world', 'hello']
```

## Additional configuration <a name="configuration"></a>

### Match kind

There are three ways you can configure matching in cases where multiple patterns overlap.
For a more in-depth explanation, see the [underlying Rust library's documentation of matching](https://docs.rs/aho-corasick/latest/aho_corasick/enum.MatchKind.html).

Assume we have this starting point:

```python
>>> from ahocorasick_rs import AhoCorasick, MatchKind
```

#### `Standard` (the default)

This returns the pattern that matches first, semantically-speaking.
This is the default matching pattern.

```python
>>> ac AhoCorasick(["disco", "disc", "discontent"])
>>> ac.find_matches_as_strings("discontent")
['disc']
>>> ac = AhoCorasick(["b", "abcd"])
>>> ac.find_matches_as_strings("abcdef")
['b']
```

In this case `disc` will match before `disco` or `discontent`.

Similarly, `b` will match before `abcd` because it ends earlier in the haystack than `abcd` does:

```python
>>> ac = AhoCorasick(["b", "abcd"])
>>> ac.find_matches_as_strings("abcdef")
['b']
```

#### `LeftmostFirst`

This returns the leftmost-in-the-haystack matching pattern that appears first in _the list of given patterns_.
That means the order of patterns makes a difference:

```python
>>> ac = AhoCorasick(["disco", "disc"], matchkind=MatchKind.LeftmostFirst)
>>> ac.find_matches_as_strings("discontent")
['disco']
>>> ac = AhoCorasick(["disc", "disco"], matchkind=MatchKind.LeftmostFirst)
['disc']
```

Here we see `abcd` matched first, because it starts before `b`:

```python
>>> ac = AhoCorasick(["b", "abcd"], matchkind=MatchKind.LeftmostFirst)
>>> ac.find_matches_as_strings("abcdef")
['abcd']
```
##### `LeftmostLongest`

This returns the leftmost-in-the-haystack matching pattern that is longest:

```python
>>> ac = AhoCorasick(["disco", "disc", "discontent"], matchkind=MatchKind.LeftmostLongest)
>>> ac.find_matches_as_strings("discontent")
['discontent']
```

### Overlapping matches

You can get all overlapping matches, instead of just one of them, but only if you stick to the default matchkind, `MatchKind.Standard`:

```python
>>> from ahocorasick_rs import AhoCorasick
>>> patterns = ["winter", "onte", "disco", "discontent"]
>>> ac = AhoCorasick(patterns)
>>> ac.find_matches_as_strings("discontent", overlapping=True)
['disco', 'onte', 'discontent']
```

### Trading memory for speed

If you use ``find_matches_as_strings()``, there are two ways strings can be constructed: from the haystack, or by caching the patterns on the object.
The former takes more work, the latter uses more memory if the patterns would otherwise have been garbage-collected.
You can control the behavior by using the `store_patterns` keyword argument to `AhoCorasick()`.

* ``AhoCorasick(..., store_patterns=None)``: The default.
  Use a heuristic (currently, whether the total of pattern string lengths is less than 4096 characters) to decide whether to store patterns or not.
* ``AhoCorasick(..., store_patterns=True)``: Keep references to the patterns, potentially speeding up ``find_matches_as_strings()`` at the cost of using more memory.
  If this uses large amounts of memory this might actually slow things down due to pressure on the CPU memory cache, and/or the performance benefit might be overwhelmed by the algorithm's search time.
* ``AhoCorasick(..., store_patterns=False)``: Don't keep references to the patterns, saving some memory but potentially slowing down ``find_matches_as_strings()``, especially when there are only a small number of patterns and you are searching a small haystack.

### Algorithm implementations: trading construction speed, memory, and performance

You can choose the type of underlying automaton to use, with different performance tradeoffs.

The underlying Rust library supports [four choices](https://docs.rs/aho-corasick/latest/aho_corasick/struct.AhoCorasickBuilder.html#method.kind), which are exposed:

* `None` uses a heuristic to choose the "best" Aho-Corasick implementation for the given patterns.
* `Implementation.NoncontiguousNFA`: A noncontiguous NFA is the fastest to be built, has moderate memory usage and is typically the slowest to execute a search.
* `Implementation.ContiguousNFA`: A contiguous NFA is a little slower to build than a noncontiguous NFA, has excellent memory usage and is typically a little slower than a DFA for a search.
* `Implementation.DFA`: A DFA is very slow to build, uses exorbitant amounts of memory, but will typically execute searches the fastest.

The default choice is `Implementation.DFA` since expensive setup compensated by fast batch operations is the standard Python tradeoff.

```python
>>> from ahocorasick_rs import AhoCorasick, Implementation
>>> ac = AhoCorasick(["disco", "disc"], implementation=Implementation.NoncontiguousNFA)
```

## Implementation details <a name="implementation"></a>

* Matching releases the GIL, to enable concurrency.
* Not all features from the underlying library are exposed; if you would like additional features, please [file an issue](https://github.com/g-research/ahocorasick_rs/issues/new) or submit a PR.

## Benchmarks <a name="benchmarks"></a>

As with any benchmark, real-world results will differ based on your particular situation.
If performance is important to your application, measure the alternatives yourself!

### Longer strings and many patterns

This benchmark matches ~4,000 patterns against lines of text that are ~700 characters long.
Each line matches either zero (90%) or one pattern (10%).

Higher is better; `ahocorasick_rs` is much faster in both cases.

| `find_matches_as_strings` or equivalent | Operations per second |
|-----------------------------------------|---------------------:|
| `ahocorasick_rs` longest matching       |            `436,000` |
| `pyahocorasick` longest matching        |             `65,000` |
| `ahocorasick_rs` overlapping matching   |            `329,000` |
| `pyahocorasick` overlapping matching    |             `76,000` |

### Shorter strings and few patterns

This benchmarks matches ~10 patterns against lines of text that are ~70 characters long.
Each line matches ~5 patterns.

Higher is better; again, `ahocorasick_rs` is faster for both, though with a smaller margin.

| `find_matches_as_strings` or equivalent | Operations per second   |
|-----------------------------------------|------------------------:|
| `ahocorasick_rs` longest matching       |             `1,930,000` |
| `pyahocorasick` longest matching        |             `1,120,000` |
| `ahocorasick_rs` overlapping matching   |             `1,250,000` |
| `pyahocorasick` overlapping matching    |               `880,000` |




%prep
%autosetup -n ahocorasick-rs-0.14.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-ahocorasick-rs -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.14.0-1
- Package Spec generated