summaryrefslogtreecommitdiff
path: root/python-airtable-export.spec
blob: 43914d850fced6fdab9eb97d3cdcd4d38cc455bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
%global _empty_manifest_terminate_build 0
Name:		python-airtable-export
Version:	0.7.1
Release:	1
Summary:	Export Airtable data to files on disk
License:	Apache License, Version 2.0
URL:		https://github.com/simonw/airtable-export
Source0:	https://mirrors.aliyun.com/pypi/web/packages/d4/4f/897f00a5cc50baccd793027554b5e5b094109e8e69167da22a13316fa34a/airtable-export-0.7.1.tar.gz
BuildArch:	noarch

Requires:	python3-click
Requires:	python3-PyYAML
Requires:	python3-httpx
Requires:	python3-sqlite-utils
Requires:	python3-pytest
Requires:	python3-pytest-mock

%description
# airtable-export

[![PyPI](https://img.shields.io/pypi/v/airtable-export.svg)](https://pypi.org/project/airtable-export/)
[![Changelog](https://img.shields.io/github/v/release/simonw/airtable-export?include_prereleases&label=changelog)](https://github.com/simonw/airtable-export/releases)
[![Tests](https://github.com/simonw/airtable-export/workflows/Test/badge.svg)](https://github.com/simonw/airtable-export/actions?query=workflow%3ATest)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/simonw/airtable-export/blob/master/LICENSE)

Export Airtable data to files on disk

## Installation

Install this tool using `pip`:

    $ pip install airtable-export

## Usage

You will need to know the following information:

- Your Airtable base ID - this is a string starting with `app...`
- Your Airtable API key - this is a string starting with `key...`
- The names of each of the tables that you wish to export

You can export all of your data to a folder called `export/` by running the following:

    airtable-export export base_id table1 table2 --key=key

This example would create two files: `export/table1.yml` and `export/table2.yml`.

Rather than passing the API key using the `--key` option you can set it as an environment variable called `AIRTABLE_KEY`.

## Export options

By default the tool exports your data as YAML.

You can also export as JSON or as [newline delimited JSON](http://ndjson.org/) using the `--json` or `--ndjson` options:

    airtable-export export base_id table1 table2 --key=key --ndjson

You can pass multiple format options at once. This command will create a `.json`, `.yml` and `.ndjson` file for each exported table:

    airtable-export export base_id table1 table2 \
        --key=key --ndjson --yaml --json

### SQLite database export

You can export tables to a SQLite database file using the `--sqlite database.db` option:

    airtable-export export base_id table1 table2 \
        --key=key --sqlite database.db

This can be combined with other format options. If you only specify `--sqlite` the export directory argument will be ignored.

The SQLite database will have a table created for each table you export. Those tables will have a primary key column called `airtable_id`.

If you run this command against an existing SQLite database records with matching primary keys will be over-written by new records from the export.

## Request options

By default the tool uses [python-httpx](https://www.python-httpx.org)'s default configurations.

You can override the `user-agent` using the `--user-agent` option:

    airtable-export export base_id table1 table2 --key=key --user-agent "Airtable Export Robot"

You can override the [timeout during a network read operation](https://www.python-httpx.org/advanced/#fine-tuning-the-configuration) using the `--http-read-timeout` option. If not set, this defaults to 5s.

    airtable-export export base_id table1 table2 --key=key --http-read-timeout 60

## Running this using GitHub Actions

[GitHub Actions](https://github.com/features/actions) is GitHub's workflow automation product. You can use it to run `airtable-export` in order to back up your Airtable data to a GitHub repository. Doing this gives you a visible commit history of changes you make to your Airtable data - like [this one](https://github.com/natbat/rockybeaches/commits/main/airtable).

To run this for your own Airtable database you'll first need to add the following secrets to your GitHub repository:

<dl>
  <dt>AIRTABLE_BASE_ID</dt>
  <dd>The base ID, a string beginning `app...`</dd>
  <dt>AIRTABLE_KEY</dt>
  <dd>Your Airtable API key</dd>
  <dt>AIRTABLE_TABLES</dt>
  <dd>A space separated list of the Airtable tables that you want to backup. If any of these contain spaces you will need to enclose them in single quotes, e.g. <samp>'My table with spaces in the name' OtherTableWithNoSpaces</samp></dd>
</dl>

Once you have set those secrets, add the following as a file called `.github/workflows/backup-airtable.yml`:
```yaml
name: Backup Airtable

on:
  workflow_dispatch:
  schedule:
  - cron: '32 0 * * *'

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
    - name: Check out repo
      uses: actions/checkout@v2
    - name: Set up Python
      uses: actions/setup-python@v2
      with:
        python-version: 3.8
    - uses: actions/cache@v2
      name: Configure pip caching
      with:
        path: ~/.cache/pip
        key: ${{ runner.os }}-pip-
        restore-keys: |
          ${{ runner.os }}-pip-
    - name: Install airtable-export
      run: |
        pip install airtable-export
    - name: Backup Airtable to backups/
      env:
        AIRTABLE_BASE_ID: ${{ secrets.AIRTABLE_BASE_ID }}
        AIRTABLE_KEY: ${{ secrets.AIRTABLE_KEY }}
        AIRTABLE_TABLES: ${{ secrets.AIRTABLE_TABLES }}
      run: |-
        airtable-export backups $AIRTABLE_BASE_ID $AIRTABLE_TABLES -v
    - name: Commit and push if it changed
      run: |-
        git config user.name "Automated"
        git config user.email "actions@users.noreply.github.com"
        git add -A
        timestamp=$(date -u)
        git commit -m "Latest data: ${timestamp}" || exit 0
        git push
```
This will run once a day (at 32 minutes past midnight UTC) and will also run if you manually click the "Run workflow" button, see [GitHub Actions: Manual triggers with workflow_dispatch](https://github.blog/changelog/2020-07-06-github-actions-manual-triggers-with-workflow_dispatch/).

## Development

To contribute to this tool, first checkout the code. Then create a new virtual environment:

    cd airtable-export
    python -mvenv venv
    source venv/bin/activate

Or if you are using `pipenv`:

    pipenv shell

Now install the dependencies and tests:

    pip install -e '.[test]'

To run the tests:

    pytest




%package -n python3-airtable-export
Summary:	Export Airtable data to files on disk
Provides:	python-airtable-export
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-airtable-export
# airtable-export

[![PyPI](https://img.shields.io/pypi/v/airtable-export.svg)](https://pypi.org/project/airtable-export/)
[![Changelog](https://img.shields.io/github/v/release/simonw/airtable-export?include_prereleases&label=changelog)](https://github.com/simonw/airtable-export/releases)
[![Tests](https://github.com/simonw/airtable-export/workflows/Test/badge.svg)](https://github.com/simonw/airtable-export/actions?query=workflow%3ATest)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/simonw/airtable-export/blob/master/LICENSE)

Export Airtable data to files on disk

## Installation

Install this tool using `pip`:

    $ pip install airtable-export

## Usage

You will need to know the following information:

- Your Airtable base ID - this is a string starting with `app...`
- Your Airtable API key - this is a string starting with `key...`
- The names of each of the tables that you wish to export

You can export all of your data to a folder called `export/` by running the following:

    airtable-export export base_id table1 table2 --key=key

This example would create two files: `export/table1.yml` and `export/table2.yml`.

Rather than passing the API key using the `--key` option you can set it as an environment variable called `AIRTABLE_KEY`.

## Export options

By default the tool exports your data as YAML.

You can also export as JSON or as [newline delimited JSON](http://ndjson.org/) using the `--json` or `--ndjson` options:

    airtable-export export base_id table1 table2 --key=key --ndjson

You can pass multiple format options at once. This command will create a `.json`, `.yml` and `.ndjson` file for each exported table:

    airtable-export export base_id table1 table2 \
        --key=key --ndjson --yaml --json

### SQLite database export

You can export tables to a SQLite database file using the `--sqlite database.db` option:

    airtable-export export base_id table1 table2 \
        --key=key --sqlite database.db

This can be combined with other format options. If you only specify `--sqlite` the export directory argument will be ignored.

The SQLite database will have a table created for each table you export. Those tables will have a primary key column called `airtable_id`.

If you run this command against an existing SQLite database records with matching primary keys will be over-written by new records from the export.

## Request options

By default the tool uses [python-httpx](https://www.python-httpx.org)'s default configurations.

You can override the `user-agent` using the `--user-agent` option:

    airtable-export export base_id table1 table2 --key=key --user-agent "Airtable Export Robot"

You can override the [timeout during a network read operation](https://www.python-httpx.org/advanced/#fine-tuning-the-configuration) using the `--http-read-timeout` option. If not set, this defaults to 5s.

    airtable-export export base_id table1 table2 --key=key --http-read-timeout 60

## Running this using GitHub Actions

[GitHub Actions](https://github.com/features/actions) is GitHub's workflow automation product. You can use it to run `airtable-export` in order to back up your Airtable data to a GitHub repository. Doing this gives you a visible commit history of changes you make to your Airtable data - like [this one](https://github.com/natbat/rockybeaches/commits/main/airtable).

To run this for your own Airtable database you'll first need to add the following secrets to your GitHub repository:

<dl>
  <dt>AIRTABLE_BASE_ID</dt>
  <dd>The base ID, a string beginning `app...`</dd>
  <dt>AIRTABLE_KEY</dt>
  <dd>Your Airtable API key</dd>
  <dt>AIRTABLE_TABLES</dt>
  <dd>A space separated list of the Airtable tables that you want to backup. If any of these contain spaces you will need to enclose them in single quotes, e.g. <samp>'My table with spaces in the name' OtherTableWithNoSpaces</samp></dd>
</dl>

Once you have set those secrets, add the following as a file called `.github/workflows/backup-airtable.yml`:
```yaml
name: Backup Airtable

on:
  workflow_dispatch:
  schedule:
  - cron: '32 0 * * *'

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
    - name: Check out repo
      uses: actions/checkout@v2
    - name: Set up Python
      uses: actions/setup-python@v2
      with:
        python-version: 3.8
    - uses: actions/cache@v2
      name: Configure pip caching
      with:
        path: ~/.cache/pip
        key: ${{ runner.os }}-pip-
        restore-keys: |
          ${{ runner.os }}-pip-
    - name: Install airtable-export
      run: |
        pip install airtable-export
    - name: Backup Airtable to backups/
      env:
        AIRTABLE_BASE_ID: ${{ secrets.AIRTABLE_BASE_ID }}
        AIRTABLE_KEY: ${{ secrets.AIRTABLE_KEY }}
        AIRTABLE_TABLES: ${{ secrets.AIRTABLE_TABLES }}
      run: |-
        airtable-export backups $AIRTABLE_BASE_ID $AIRTABLE_TABLES -v
    - name: Commit and push if it changed
      run: |-
        git config user.name "Automated"
        git config user.email "actions@users.noreply.github.com"
        git add -A
        timestamp=$(date -u)
        git commit -m "Latest data: ${timestamp}" || exit 0
        git push
```
This will run once a day (at 32 minutes past midnight UTC) and will also run if you manually click the "Run workflow" button, see [GitHub Actions: Manual triggers with workflow_dispatch](https://github.blog/changelog/2020-07-06-github-actions-manual-triggers-with-workflow_dispatch/).

## Development

To contribute to this tool, first checkout the code. Then create a new virtual environment:

    cd airtable-export
    python -mvenv venv
    source venv/bin/activate

Or if you are using `pipenv`:

    pipenv shell

Now install the dependencies and tests:

    pip install -e '.[test]'

To run the tests:

    pytest




%package help
Summary:	Development documents and examples for airtable-export
Provides:	python3-airtable-export-doc
%description help
# airtable-export

[![PyPI](https://img.shields.io/pypi/v/airtable-export.svg)](https://pypi.org/project/airtable-export/)
[![Changelog](https://img.shields.io/github/v/release/simonw/airtable-export?include_prereleases&label=changelog)](https://github.com/simonw/airtable-export/releases)
[![Tests](https://github.com/simonw/airtable-export/workflows/Test/badge.svg)](https://github.com/simonw/airtable-export/actions?query=workflow%3ATest)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/simonw/airtable-export/blob/master/LICENSE)

Export Airtable data to files on disk

## Installation

Install this tool using `pip`:

    $ pip install airtable-export

## Usage

You will need to know the following information:

- Your Airtable base ID - this is a string starting with `app...`
- Your Airtable API key - this is a string starting with `key...`
- The names of each of the tables that you wish to export

You can export all of your data to a folder called `export/` by running the following:

    airtable-export export base_id table1 table2 --key=key

This example would create two files: `export/table1.yml` and `export/table2.yml`.

Rather than passing the API key using the `--key` option you can set it as an environment variable called `AIRTABLE_KEY`.

## Export options

By default the tool exports your data as YAML.

You can also export as JSON or as [newline delimited JSON](http://ndjson.org/) using the `--json` or `--ndjson` options:

    airtable-export export base_id table1 table2 --key=key --ndjson

You can pass multiple format options at once. This command will create a `.json`, `.yml` and `.ndjson` file for each exported table:

    airtable-export export base_id table1 table2 \
        --key=key --ndjson --yaml --json

### SQLite database export

You can export tables to a SQLite database file using the `--sqlite database.db` option:

    airtable-export export base_id table1 table2 \
        --key=key --sqlite database.db

This can be combined with other format options. If you only specify `--sqlite` the export directory argument will be ignored.

The SQLite database will have a table created for each table you export. Those tables will have a primary key column called `airtable_id`.

If you run this command against an existing SQLite database records with matching primary keys will be over-written by new records from the export.

## Request options

By default the tool uses [python-httpx](https://www.python-httpx.org)'s default configurations.

You can override the `user-agent` using the `--user-agent` option:

    airtable-export export base_id table1 table2 --key=key --user-agent "Airtable Export Robot"

You can override the [timeout during a network read operation](https://www.python-httpx.org/advanced/#fine-tuning-the-configuration) using the `--http-read-timeout` option. If not set, this defaults to 5s.

    airtable-export export base_id table1 table2 --key=key --http-read-timeout 60

## Running this using GitHub Actions

[GitHub Actions](https://github.com/features/actions) is GitHub's workflow automation product. You can use it to run `airtable-export` in order to back up your Airtable data to a GitHub repository. Doing this gives you a visible commit history of changes you make to your Airtable data - like [this one](https://github.com/natbat/rockybeaches/commits/main/airtable).

To run this for your own Airtable database you'll first need to add the following secrets to your GitHub repository:

<dl>
  <dt>AIRTABLE_BASE_ID</dt>
  <dd>The base ID, a string beginning `app...`</dd>
  <dt>AIRTABLE_KEY</dt>
  <dd>Your Airtable API key</dd>
  <dt>AIRTABLE_TABLES</dt>
  <dd>A space separated list of the Airtable tables that you want to backup. If any of these contain spaces you will need to enclose them in single quotes, e.g. <samp>'My table with spaces in the name' OtherTableWithNoSpaces</samp></dd>
</dl>

Once you have set those secrets, add the following as a file called `.github/workflows/backup-airtable.yml`:
```yaml
name: Backup Airtable

on:
  workflow_dispatch:
  schedule:
  - cron: '32 0 * * *'

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
    - name: Check out repo
      uses: actions/checkout@v2
    - name: Set up Python
      uses: actions/setup-python@v2
      with:
        python-version: 3.8
    - uses: actions/cache@v2
      name: Configure pip caching
      with:
        path: ~/.cache/pip
        key: ${{ runner.os }}-pip-
        restore-keys: |
          ${{ runner.os }}-pip-
    - name: Install airtable-export
      run: |
        pip install airtable-export
    - name: Backup Airtable to backups/
      env:
        AIRTABLE_BASE_ID: ${{ secrets.AIRTABLE_BASE_ID }}
        AIRTABLE_KEY: ${{ secrets.AIRTABLE_KEY }}
        AIRTABLE_TABLES: ${{ secrets.AIRTABLE_TABLES }}
      run: |-
        airtable-export backups $AIRTABLE_BASE_ID $AIRTABLE_TABLES -v
    - name: Commit and push if it changed
      run: |-
        git config user.name "Automated"
        git config user.email "actions@users.noreply.github.com"
        git add -A
        timestamp=$(date -u)
        git commit -m "Latest data: ${timestamp}" || exit 0
        git push
```
This will run once a day (at 32 minutes past midnight UTC) and will also run if you manually click the "Run workflow" button, see [GitHub Actions: Manual triggers with workflow_dispatch](https://github.blog/changelog/2020-07-06-github-actions-manual-triggers-with-workflow_dispatch/).

## Development

To contribute to this tool, first checkout the code. Then create a new virtual environment:

    cd airtable-export
    python -mvenv venv
    source venv/bin/activate

Or if you are using `pipenv`:

    pipenv shell

Now install the dependencies and tests:

    pip install -e '.[test]'

To run the tests:

    pytest




%prep
%autosetup -n airtable-export-0.7.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-airtable-export -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.7.1-1
- Package Spec generated