summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-06-20 07:51:23 +0000
committerCoprDistGit <infra@openeuler.org>2023-06-20 07:51:23 +0000
commit12f8cd2e0e884fd0a4aed299d964d43913281ccf (patch)
tree312618d6e3269ce895abff439847057fdffc268d
parent60cebf14c8f254a7aca88187a9369ca86d19eae0 (diff)
automatic import of python-alfabetopeneuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-alfabet.spec207
-rw-r--r--sources1
3 files changed, 209 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..b0bd2f3 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/alfabet-0.4.1.tar.gz
diff --git a/python-alfabet.spec b/python-alfabet.spec
new file mode 100644
index 0000000..bf157a6
--- /dev/null
+++ b/python-alfabet.spec
@@ -0,0 +1,207 @@
+%global _empty_manifest_terminate_build 0
+Name: python-alfabet
+Version: 0.4.1
+Release: 1
+Summary: A library to estimate bond dissociation energies (BDEs) of organic molecules
+License: MIT License
+URL: https://github.com/NREL/alfabet
+Source0: https://mirrors.aliyun.com/pypi/web/packages/f0/51/0fac2d12ff586c42deea6785fdb7161a0f0ffdaee9c676a8699da25a8462/alfabet-0.4.1.tar.gz
+BuildArch: noarch
+
+Requires: python3-pandas
+Requires: python3-nfp
+Requires: python3-tqdm
+Requires: python3-pooch
+Requires: python3-joblib
+Requires: python3-scikit-learn
+
+%description
+![ALFABET logo](/docs/logo.svg)
+
+[![PyPI version](https://badge.fury.io/py/alfabet.svg)](https://badge.fury.io/py/alfabet)
+[![Build Status](https://travis-ci.com/NREL/alfabet.svg?branch=master)](https://travis-ci.com/NREL/alfabet)
+
+# A machine-Learning derived, Fast, Accurate Bond dissociation Enthalpy Tool (ALFABET)
+
+This library contains the trained graph neural network model for the prediction of homolytic bond dissociation energies (BDEs) of organic molecules with C, H, N, and O atoms. This package offers a command-line interface to the web-based model predictions at [bde.ml.nrel.gov](https://bde.ml.nrel.gov/).
+
+The basic interface works as follows, where `predict` expects a list of SMILES strings of the target molecules
+```python
+>>> from alfabet import model
+>>> model.predict(['CC', 'NCCO'])
+```
+```
+ molecule bond_index bond_type fragment1 fragment2 ... bde_pred is_valid
+0 CC 0 C-C [CH3] [CH3] ... 90.278282 True
+1 CC 1 C-H [H] [CH2]C ... 99.346184 True
+2 NCCO 0 C-N [CH2]CO [NH2] ... 89.988495 True
+3 NCCO 1 C-C [CH2]O [CH2]N ... 82.122429 True
+4 NCCO 2 C-O [CH2]CN [OH] ... 98.250961 True
+5 NCCO 3 H-N [H] [NH]CCO ... 99.134750 True
+6 NCCO 5 C-H [H] N[CH]CO ... 92.216087 True
+7 NCCO 7 C-H [H] NC[CH]O ... 92.562988 True
+8 NCCO 9 H-O [H] NCC[O] ... 105.120598 True
+```
+
+The model breaks all single, non-cyclic bonds in the input molecules and calculates their bond dissociation energies. Typical prediction errors are less than 1 kcal/mol.
+The model is based on Tensorflow (2.x), and makes heavy use of the [neural fingerprint](github.com/NREL/nfp) library (0.1.x).
+
+For additional details, see the publication:
+St. John, P. C., Guan, Y., Kim, Y., Kim, S., & Paton, R. S. (2020). Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nature Communications, 11(1). doi:10.1038/s41467-020-16201-z
+
+*Note:* For the exact model described in the text, install `alfabet` version 0.0.x. Versions >0.1 have been updated for tensorflow 2.
+
+## Installation
+Installation with `conda` is recommended, as [`rdkit`](https://github.com/rdkit/rdkit) can otherwise be difficult to install
+
+```bash
+$ conda create -n alfabet -c conda-forge python=3.7 rdkit
+$ source activate alfabet
+$ pip install alfabet
+``
+
+
+%package -n python3-alfabet
+Summary: A library to estimate bond dissociation energies (BDEs) of organic molecules
+Provides: python-alfabet
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-alfabet
+![ALFABET logo](/docs/logo.svg)
+
+[![PyPI version](https://badge.fury.io/py/alfabet.svg)](https://badge.fury.io/py/alfabet)
+[![Build Status](https://travis-ci.com/NREL/alfabet.svg?branch=master)](https://travis-ci.com/NREL/alfabet)
+
+# A machine-Learning derived, Fast, Accurate Bond dissociation Enthalpy Tool (ALFABET)
+
+This library contains the trained graph neural network model for the prediction of homolytic bond dissociation energies (BDEs) of organic molecules with C, H, N, and O atoms. This package offers a command-line interface to the web-based model predictions at [bde.ml.nrel.gov](https://bde.ml.nrel.gov/).
+
+The basic interface works as follows, where `predict` expects a list of SMILES strings of the target molecules
+```python
+>>> from alfabet import model
+>>> model.predict(['CC', 'NCCO'])
+```
+```
+ molecule bond_index bond_type fragment1 fragment2 ... bde_pred is_valid
+0 CC 0 C-C [CH3] [CH3] ... 90.278282 True
+1 CC 1 C-H [H] [CH2]C ... 99.346184 True
+2 NCCO 0 C-N [CH2]CO [NH2] ... 89.988495 True
+3 NCCO 1 C-C [CH2]O [CH2]N ... 82.122429 True
+4 NCCO 2 C-O [CH2]CN [OH] ... 98.250961 True
+5 NCCO 3 H-N [H] [NH]CCO ... 99.134750 True
+6 NCCO 5 C-H [H] N[CH]CO ... 92.216087 True
+7 NCCO 7 C-H [H] NC[CH]O ... 92.562988 True
+8 NCCO 9 H-O [H] NCC[O] ... 105.120598 True
+```
+
+The model breaks all single, non-cyclic bonds in the input molecules and calculates their bond dissociation energies. Typical prediction errors are less than 1 kcal/mol.
+The model is based on Tensorflow (2.x), and makes heavy use of the [neural fingerprint](github.com/NREL/nfp) library (0.1.x).
+
+For additional details, see the publication:
+St. John, P. C., Guan, Y., Kim, Y., Kim, S., & Paton, R. S. (2020). Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nature Communications, 11(1). doi:10.1038/s41467-020-16201-z
+
+*Note:* For the exact model described in the text, install `alfabet` version 0.0.x. Versions >0.1 have been updated for tensorflow 2.
+
+## Installation
+Installation with `conda` is recommended, as [`rdkit`](https://github.com/rdkit/rdkit) can otherwise be difficult to install
+
+```bash
+$ conda create -n alfabet -c conda-forge python=3.7 rdkit
+$ source activate alfabet
+$ pip install alfabet
+``
+
+
+%package help
+Summary: Development documents and examples for alfabet
+Provides: python3-alfabet-doc
+%description help
+![ALFABET logo](/docs/logo.svg)
+
+[![PyPI version](https://badge.fury.io/py/alfabet.svg)](https://badge.fury.io/py/alfabet)
+[![Build Status](https://travis-ci.com/NREL/alfabet.svg?branch=master)](https://travis-ci.com/NREL/alfabet)
+
+# A machine-Learning derived, Fast, Accurate Bond dissociation Enthalpy Tool (ALFABET)
+
+This library contains the trained graph neural network model for the prediction of homolytic bond dissociation energies (BDEs) of organic molecules with C, H, N, and O atoms. This package offers a command-line interface to the web-based model predictions at [bde.ml.nrel.gov](https://bde.ml.nrel.gov/).
+
+The basic interface works as follows, where `predict` expects a list of SMILES strings of the target molecules
+```python
+>>> from alfabet import model
+>>> model.predict(['CC', 'NCCO'])
+```
+```
+ molecule bond_index bond_type fragment1 fragment2 ... bde_pred is_valid
+0 CC 0 C-C [CH3] [CH3] ... 90.278282 True
+1 CC 1 C-H [H] [CH2]C ... 99.346184 True
+2 NCCO 0 C-N [CH2]CO [NH2] ... 89.988495 True
+3 NCCO 1 C-C [CH2]O [CH2]N ... 82.122429 True
+4 NCCO 2 C-O [CH2]CN [OH] ... 98.250961 True
+5 NCCO 3 H-N [H] [NH]CCO ... 99.134750 True
+6 NCCO 5 C-H [H] N[CH]CO ... 92.216087 True
+7 NCCO 7 C-H [H] NC[CH]O ... 92.562988 True
+8 NCCO 9 H-O [H] NCC[O] ... 105.120598 True
+```
+
+The model breaks all single, non-cyclic bonds in the input molecules and calculates their bond dissociation energies. Typical prediction errors are less than 1 kcal/mol.
+The model is based on Tensorflow (2.x), and makes heavy use of the [neural fingerprint](github.com/NREL/nfp) library (0.1.x).
+
+For additional details, see the publication:
+St. John, P. C., Guan, Y., Kim, Y., Kim, S., & Paton, R. S. (2020). Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nature Communications, 11(1). doi:10.1038/s41467-020-16201-z
+
+*Note:* For the exact model described in the text, install `alfabet` version 0.0.x. Versions >0.1 have been updated for tensorflow 2.
+
+## Installation
+Installation with `conda` is recommended, as [`rdkit`](https://github.com/rdkit/rdkit) can otherwise be difficult to install
+
+```bash
+$ conda create -n alfabet -c conda-forge python=3.7 rdkit
+$ source activate alfabet
+$ pip install alfabet
+``
+
+
+%prep
+%autosetup -n alfabet-0.4.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-alfabet -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..09a8993
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+e4818146a2a9293d0597cd289d44a40c alfabet-0.4.1.tar.gz