1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
|
%global _empty_manifest_terminate_build 0
Name: python-amberflo-metering-python
Version: 3.1.0
Release: 1
Summary: Integrate Amberflo into any Python 3 application.
License: MIT License
URL: https://github.com/amberflo/metering-python
Source0: https://mirrors.aliyun.com/pypi/web/packages/d7/86/dc769203f3611b0988683725c5dac12fd104b8de17a1189c8b4589bc7366/amberflo-metering-python-3.1.0.tar.gz
BuildArch: noarch
Requires: python3-requests
Requires: python3-backoff
Requires: python3-boto3
%description
# amberflo-metering-python
<p>
<a href="https://github.com/amberflo/metering-python/actions">
<img alt="CI Status" src="https://github.com/amberflo/metering-python/actions/workflows/tests.yml/badge.svg?branch=main">
</a>
<a href="https://pypi.org/project/amberflo-metering-python/">
<img alt="PyPI" src="https://img.shields.io/pypi/v/amberflo-metering-python">
</a>
</p>
[Amberflo](https://amberflo.io) is the simplest way to integrate metering into your application.
This is the official Python 3 client that wraps the [Amberflo REST API](https://docs.amberflo.io/docs).
## :heavy_check_mark: Features
- Add and update customers
- Assign and update product plans to customers
- List invoices of a customer
- Get a new customer portal session for a customer
- Add and list prepaid orders to customers
- Send meter events
- In asynchronous batches for high throughput (with optional flush on demand)
- Or synchronously
- Using the Amberflo API or the Amberflo supplied AWS S3 bucket
- Query usage
- Fine grained logging control
## :rocket: Quick Start
1. [Sign up for free](https://ui.amberflo.io/) and get an API key.
2. Install the SDK
```
pip install amberflo-metering-python
```
3. Create a customer
```python
import os
from metering.customer import CustomerApiClient, create_customer_payload
client = CustomerApiClient(os.environ.get("API_KEY"))
message = create_customer_payload(
customer_id="sample-customer-123",
customer_email="customer-123@sample.com",
customer_name="Sample Customer",
traits={
"region": "us-east-1",
},
)
customer = client.add_or_update(message)
```
4. Ingest meter events
```python
import os
from time import time
from metering.ingest import create_ingest_client
client = create_ingest_client(api_key=os.environ["API_KEY"])
dimensions = {"region": "us-east-1"}
customer_id = "sample-customer-123"
client.meter(
meter_api_name="sample-meter",
meter_value=5,
meter_time_in_millis=int(time() * 1000),
customer_id=customer_id,
dimensions=dimensions,
)
```
5. Query usage
```python
import os
from time import time
from metering.usage import (AggregationType, Take, TimeGroupingInterval,
TimeRange, UsageApiClient, create_usage_query)
client = UsageApiClient(os.environ.get("API_KEY"))
since_two_days_ago = TimeRange(int(time()) - 60 * 60 * 24 * 2)
query = create_usage_query(
meter_api_name="my_meter",
aggregation=AggregationType.SUM,
time_grouping_interval=TimeGroupingInterval.DAY,
time_range=since_two_days_ago,
group_by=["customerId"],
usage_filter={"customerId": ["some-customer-321", "sample-customer-123"]},
take=Take(limit=10, is_ascending=False),
)
report = client.get(query)
```
## :zap: High throughput ingestion
Amberflo.io libraries are built to support high throughput environments. That
means you can safely send hundreds of meter records per second. For example,
you can chose to deploy it on a web server that is serving hundreds of requests
per second.
However, every call does not result in a HTTP request, but is queued in memory
instead. Messages are batched and flushed in the background, allowing for much
faster operation. The size of batch and rate of flush can be customized.
**Flush on demand:** For example, at the end of your program, you'll want to
flush to make sure there's nothing left in the queue. Calling this method will
block the calling thread until there are no messages left in the queue. So,
you'll want to use it as part of your cleanup scripts and avoid using it as
part of the request lifecycle.
**Error handling:** The SDK allows you to set up a `on_error` callback function
for handling errors when trying to send a batch.
Here is a complete example, showing the default values of all options:
```python
def on_error_callback(error, batch):
...
client = create_ingest_client(
api_key=API_KEY,
max_queue_size=100000, # max number of items in the queue before rejecting new items
threads=2, # number of worker threads doing the sending
retries=2, # max number of retries after failures
batch_size=100, # max number of meter records in a batch
send_interval_in_secs=0.5, # wait time before sending an incomplete batch
sleep_interval_in_secs=0.1, # wait time after failure to send or queue empty
on_error=on_error_callback, # handle failures to send a batch
)
...
client.meter(...)
client.flush() # block and make sure all messages are sent
```
### What happens if there are just too many messages?
If the module detects that it can't flush faster than it's receiving messages,
it'll simply stop accepting new messages. This allows your program to
continually run without ever crashing due to a backed up metering queue.
### Ingesting through the S3 bucket
The SDK provides a `metering.ingest.IngestS3Client` so you can send your meter
records to us via the S3 bucket.
Use of this feature is enabled if you install the library with the `s3` option:
```
pip install amberflo-metering-python[s3]
```
Just pass the S3 bucket credentials to the factory function:
```python
client = create_ingest_client(
bucket_name=os.environ.get("BUCKET_NAME"),
access_key=os.environ.get("ACCESS_KEY"),
secret_key=os.environ.get("SECRET_KEY"),
)
```
## :book: Documentation
General documentation on how to use Amberflo is available at [Product Walkthrough](https://docs.amberflo.io/docs/product-walkthrough).
The full REST API documentation is available at [API Reference](https://docs.amberflo.io/reference).
## :scroll: Samples
Code samples covering different scenarios are available in the [./samples](https://github.com/amberflo/metering-python/blob/main/samples/README.md) folder.
## :construction_worker: Contributing
Feel free to open issues and send a pull request.
Also, check out [CONTRIBUTING.md](https://github.com/amberflo/metering-python/blob/main/CONTRIBUTING.md).
## :bookmark_tabs: Reference
### API Clients
#### [Ingest](https://docs.amberflo.io/reference/post_ingest)
```python
from metering.ingest import (
create_ingest_payload,
create_ingest_client,
)
```
#### [Customer](https://docs.amberflo.io/reference/post_customers)
```python
from metering.customer import (
CustomerApiClient,
create_customer_payload,
)
```
#### [Usage](https://docs.amberflo.io/reference/post_usage)
```python
from metering.usage import (
AggregationType,
Take,
TimeGroupingInterval,
TimeRange,
UsageApiClient,
create_usage_query,
create_all_usage_query,
)
```
#### [Customer Portal Session](https://docs.amberflo.io/reference/post_session)
```python
from metering.customer_portal_session import (
CustomerPortalSessionApiClient,
create_customer_portal_session_payload,
)
```
#### [Customer Prepaid Order](https://docs.amberflo.io/reference/post_payments-pricing-amberflo-customer-prepaid)
```python
from metering.customer_prepaid_order import (
BillingPeriod,
BillingPeriodUnit,
CustomerPrepaidOrderApiClient,
create_customer_prepaid_order_payload,
)
```
#### [Customer Product Invoice](https://docs.amberflo.io/reference/get_payments-billing-customer-product-invoice)
```python
from metering.customer_product_invoice import (
CustomerProductInvoiceApiClient,
create_all_invoices_query,
create_latest_invoice_query,
create_invoice_query,
)
```
#### [Customer Product Plan](https://docs.amberflo.io/reference/post_payments-pricing-amberflo-customer-pricing)
```python
from metering.customer_product_plan import (
CustomerProductPlanApiClient,
create_customer_product_plan_payload,
)
```
### Exceptions
```python
from metering.exceptions import ApiError
```
### Logging
`amberflo-metering-python` uses the standard Python logging framework. By
default, logging is and set at the `WARNING` level.
The following loggers are used:
- `metering.ingest.producer`
- `metering.ingest.s3_client`
- `metering.ingest.consumer`
- `metering.session.ingest_session`
- `metering.session.api_session`
%package -n python3-amberflo-metering-python
Summary: Integrate Amberflo into any Python 3 application.
Provides: python-amberflo-metering-python
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-amberflo-metering-python
# amberflo-metering-python
<p>
<a href="https://github.com/amberflo/metering-python/actions">
<img alt="CI Status" src="https://github.com/amberflo/metering-python/actions/workflows/tests.yml/badge.svg?branch=main">
</a>
<a href="https://pypi.org/project/amberflo-metering-python/">
<img alt="PyPI" src="https://img.shields.io/pypi/v/amberflo-metering-python">
</a>
</p>
[Amberflo](https://amberflo.io) is the simplest way to integrate metering into your application.
This is the official Python 3 client that wraps the [Amberflo REST API](https://docs.amberflo.io/docs).
## :heavy_check_mark: Features
- Add and update customers
- Assign and update product plans to customers
- List invoices of a customer
- Get a new customer portal session for a customer
- Add and list prepaid orders to customers
- Send meter events
- In asynchronous batches for high throughput (with optional flush on demand)
- Or synchronously
- Using the Amberflo API or the Amberflo supplied AWS S3 bucket
- Query usage
- Fine grained logging control
## :rocket: Quick Start
1. [Sign up for free](https://ui.amberflo.io/) and get an API key.
2. Install the SDK
```
pip install amberflo-metering-python
```
3. Create a customer
```python
import os
from metering.customer import CustomerApiClient, create_customer_payload
client = CustomerApiClient(os.environ.get("API_KEY"))
message = create_customer_payload(
customer_id="sample-customer-123",
customer_email="customer-123@sample.com",
customer_name="Sample Customer",
traits={
"region": "us-east-1",
},
)
customer = client.add_or_update(message)
```
4. Ingest meter events
```python
import os
from time import time
from metering.ingest import create_ingest_client
client = create_ingest_client(api_key=os.environ["API_KEY"])
dimensions = {"region": "us-east-1"}
customer_id = "sample-customer-123"
client.meter(
meter_api_name="sample-meter",
meter_value=5,
meter_time_in_millis=int(time() * 1000),
customer_id=customer_id,
dimensions=dimensions,
)
```
5. Query usage
```python
import os
from time import time
from metering.usage import (AggregationType, Take, TimeGroupingInterval,
TimeRange, UsageApiClient, create_usage_query)
client = UsageApiClient(os.environ.get("API_KEY"))
since_two_days_ago = TimeRange(int(time()) - 60 * 60 * 24 * 2)
query = create_usage_query(
meter_api_name="my_meter",
aggregation=AggregationType.SUM,
time_grouping_interval=TimeGroupingInterval.DAY,
time_range=since_two_days_ago,
group_by=["customerId"],
usage_filter={"customerId": ["some-customer-321", "sample-customer-123"]},
take=Take(limit=10, is_ascending=False),
)
report = client.get(query)
```
## :zap: High throughput ingestion
Amberflo.io libraries are built to support high throughput environments. That
means you can safely send hundreds of meter records per second. For example,
you can chose to deploy it on a web server that is serving hundreds of requests
per second.
However, every call does not result in a HTTP request, but is queued in memory
instead. Messages are batched and flushed in the background, allowing for much
faster operation. The size of batch and rate of flush can be customized.
**Flush on demand:** For example, at the end of your program, you'll want to
flush to make sure there's nothing left in the queue. Calling this method will
block the calling thread until there are no messages left in the queue. So,
you'll want to use it as part of your cleanup scripts and avoid using it as
part of the request lifecycle.
**Error handling:** The SDK allows you to set up a `on_error` callback function
for handling errors when trying to send a batch.
Here is a complete example, showing the default values of all options:
```python
def on_error_callback(error, batch):
...
client = create_ingest_client(
api_key=API_KEY,
max_queue_size=100000, # max number of items in the queue before rejecting new items
threads=2, # number of worker threads doing the sending
retries=2, # max number of retries after failures
batch_size=100, # max number of meter records in a batch
send_interval_in_secs=0.5, # wait time before sending an incomplete batch
sleep_interval_in_secs=0.1, # wait time after failure to send or queue empty
on_error=on_error_callback, # handle failures to send a batch
)
...
client.meter(...)
client.flush() # block and make sure all messages are sent
```
### What happens if there are just too many messages?
If the module detects that it can't flush faster than it's receiving messages,
it'll simply stop accepting new messages. This allows your program to
continually run without ever crashing due to a backed up metering queue.
### Ingesting through the S3 bucket
The SDK provides a `metering.ingest.IngestS3Client` so you can send your meter
records to us via the S3 bucket.
Use of this feature is enabled if you install the library with the `s3` option:
```
pip install amberflo-metering-python[s3]
```
Just pass the S3 bucket credentials to the factory function:
```python
client = create_ingest_client(
bucket_name=os.environ.get("BUCKET_NAME"),
access_key=os.environ.get("ACCESS_KEY"),
secret_key=os.environ.get("SECRET_KEY"),
)
```
## :book: Documentation
General documentation on how to use Amberflo is available at [Product Walkthrough](https://docs.amberflo.io/docs/product-walkthrough).
The full REST API documentation is available at [API Reference](https://docs.amberflo.io/reference).
## :scroll: Samples
Code samples covering different scenarios are available in the [./samples](https://github.com/amberflo/metering-python/blob/main/samples/README.md) folder.
## :construction_worker: Contributing
Feel free to open issues and send a pull request.
Also, check out [CONTRIBUTING.md](https://github.com/amberflo/metering-python/blob/main/CONTRIBUTING.md).
## :bookmark_tabs: Reference
### API Clients
#### [Ingest](https://docs.amberflo.io/reference/post_ingest)
```python
from metering.ingest import (
create_ingest_payload,
create_ingest_client,
)
```
#### [Customer](https://docs.amberflo.io/reference/post_customers)
```python
from metering.customer import (
CustomerApiClient,
create_customer_payload,
)
```
#### [Usage](https://docs.amberflo.io/reference/post_usage)
```python
from metering.usage import (
AggregationType,
Take,
TimeGroupingInterval,
TimeRange,
UsageApiClient,
create_usage_query,
create_all_usage_query,
)
```
#### [Customer Portal Session](https://docs.amberflo.io/reference/post_session)
```python
from metering.customer_portal_session import (
CustomerPortalSessionApiClient,
create_customer_portal_session_payload,
)
```
#### [Customer Prepaid Order](https://docs.amberflo.io/reference/post_payments-pricing-amberflo-customer-prepaid)
```python
from metering.customer_prepaid_order import (
BillingPeriod,
BillingPeriodUnit,
CustomerPrepaidOrderApiClient,
create_customer_prepaid_order_payload,
)
```
#### [Customer Product Invoice](https://docs.amberflo.io/reference/get_payments-billing-customer-product-invoice)
```python
from metering.customer_product_invoice import (
CustomerProductInvoiceApiClient,
create_all_invoices_query,
create_latest_invoice_query,
create_invoice_query,
)
```
#### [Customer Product Plan](https://docs.amberflo.io/reference/post_payments-pricing-amberflo-customer-pricing)
```python
from metering.customer_product_plan import (
CustomerProductPlanApiClient,
create_customer_product_plan_payload,
)
```
### Exceptions
```python
from metering.exceptions import ApiError
```
### Logging
`amberflo-metering-python` uses the standard Python logging framework. By
default, logging is and set at the `WARNING` level.
The following loggers are used:
- `metering.ingest.producer`
- `metering.ingest.s3_client`
- `metering.ingest.consumer`
- `metering.session.ingest_session`
- `metering.session.api_session`
%package help
Summary: Development documents and examples for amberflo-metering-python
Provides: python3-amberflo-metering-python-doc
%description help
# amberflo-metering-python
<p>
<a href="https://github.com/amberflo/metering-python/actions">
<img alt="CI Status" src="https://github.com/amberflo/metering-python/actions/workflows/tests.yml/badge.svg?branch=main">
</a>
<a href="https://pypi.org/project/amberflo-metering-python/">
<img alt="PyPI" src="https://img.shields.io/pypi/v/amberflo-metering-python">
</a>
</p>
[Amberflo](https://amberflo.io) is the simplest way to integrate metering into your application.
This is the official Python 3 client that wraps the [Amberflo REST API](https://docs.amberflo.io/docs).
## :heavy_check_mark: Features
- Add and update customers
- Assign and update product plans to customers
- List invoices of a customer
- Get a new customer portal session for a customer
- Add and list prepaid orders to customers
- Send meter events
- In asynchronous batches for high throughput (with optional flush on demand)
- Or synchronously
- Using the Amberflo API or the Amberflo supplied AWS S3 bucket
- Query usage
- Fine grained logging control
## :rocket: Quick Start
1. [Sign up for free](https://ui.amberflo.io/) and get an API key.
2. Install the SDK
```
pip install amberflo-metering-python
```
3. Create a customer
```python
import os
from metering.customer import CustomerApiClient, create_customer_payload
client = CustomerApiClient(os.environ.get("API_KEY"))
message = create_customer_payload(
customer_id="sample-customer-123",
customer_email="customer-123@sample.com",
customer_name="Sample Customer",
traits={
"region": "us-east-1",
},
)
customer = client.add_or_update(message)
```
4. Ingest meter events
```python
import os
from time import time
from metering.ingest import create_ingest_client
client = create_ingest_client(api_key=os.environ["API_KEY"])
dimensions = {"region": "us-east-1"}
customer_id = "sample-customer-123"
client.meter(
meter_api_name="sample-meter",
meter_value=5,
meter_time_in_millis=int(time() * 1000),
customer_id=customer_id,
dimensions=dimensions,
)
```
5. Query usage
```python
import os
from time import time
from metering.usage import (AggregationType, Take, TimeGroupingInterval,
TimeRange, UsageApiClient, create_usage_query)
client = UsageApiClient(os.environ.get("API_KEY"))
since_two_days_ago = TimeRange(int(time()) - 60 * 60 * 24 * 2)
query = create_usage_query(
meter_api_name="my_meter",
aggregation=AggregationType.SUM,
time_grouping_interval=TimeGroupingInterval.DAY,
time_range=since_two_days_ago,
group_by=["customerId"],
usage_filter={"customerId": ["some-customer-321", "sample-customer-123"]},
take=Take(limit=10, is_ascending=False),
)
report = client.get(query)
```
## :zap: High throughput ingestion
Amberflo.io libraries are built to support high throughput environments. That
means you can safely send hundreds of meter records per second. For example,
you can chose to deploy it on a web server that is serving hundreds of requests
per second.
However, every call does not result in a HTTP request, but is queued in memory
instead. Messages are batched and flushed in the background, allowing for much
faster operation. The size of batch and rate of flush can be customized.
**Flush on demand:** For example, at the end of your program, you'll want to
flush to make sure there's nothing left in the queue. Calling this method will
block the calling thread until there are no messages left in the queue. So,
you'll want to use it as part of your cleanup scripts and avoid using it as
part of the request lifecycle.
**Error handling:** The SDK allows you to set up a `on_error` callback function
for handling errors when trying to send a batch.
Here is a complete example, showing the default values of all options:
```python
def on_error_callback(error, batch):
...
client = create_ingest_client(
api_key=API_KEY,
max_queue_size=100000, # max number of items in the queue before rejecting new items
threads=2, # number of worker threads doing the sending
retries=2, # max number of retries after failures
batch_size=100, # max number of meter records in a batch
send_interval_in_secs=0.5, # wait time before sending an incomplete batch
sleep_interval_in_secs=0.1, # wait time after failure to send or queue empty
on_error=on_error_callback, # handle failures to send a batch
)
...
client.meter(...)
client.flush() # block and make sure all messages are sent
```
### What happens if there are just too many messages?
If the module detects that it can't flush faster than it's receiving messages,
it'll simply stop accepting new messages. This allows your program to
continually run without ever crashing due to a backed up metering queue.
### Ingesting through the S3 bucket
The SDK provides a `metering.ingest.IngestS3Client` so you can send your meter
records to us via the S3 bucket.
Use of this feature is enabled if you install the library with the `s3` option:
```
pip install amberflo-metering-python[s3]
```
Just pass the S3 bucket credentials to the factory function:
```python
client = create_ingest_client(
bucket_name=os.environ.get("BUCKET_NAME"),
access_key=os.environ.get("ACCESS_KEY"),
secret_key=os.environ.get("SECRET_KEY"),
)
```
## :book: Documentation
General documentation on how to use Amberflo is available at [Product Walkthrough](https://docs.amberflo.io/docs/product-walkthrough).
The full REST API documentation is available at [API Reference](https://docs.amberflo.io/reference).
## :scroll: Samples
Code samples covering different scenarios are available in the [./samples](https://github.com/amberflo/metering-python/blob/main/samples/README.md) folder.
## :construction_worker: Contributing
Feel free to open issues and send a pull request.
Also, check out [CONTRIBUTING.md](https://github.com/amberflo/metering-python/blob/main/CONTRIBUTING.md).
## :bookmark_tabs: Reference
### API Clients
#### [Ingest](https://docs.amberflo.io/reference/post_ingest)
```python
from metering.ingest import (
create_ingest_payload,
create_ingest_client,
)
```
#### [Customer](https://docs.amberflo.io/reference/post_customers)
```python
from metering.customer import (
CustomerApiClient,
create_customer_payload,
)
```
#### [Usage](https://docs.amberflo.io/reference/post_usage)
```python
from metering.usage import (
AggregationType,
Take,
TimeGroupingInterval,
TimeRange,
UsageApiClient,
create_usage_query,
create_all_usage_query,
)
```
#### [Customer Portal Session](https://docs.amberflo.io/reference/post_session)
```python
from metering.customer_portal_session import (
CustomerPortalSessionApiClient,
create_customer_portal_session_payload,
)
```
#### [Customer Prepaid Order](https://docs.amberflo.io/reference/post_payments-pricing-amberflo-customer-prepaid)
```python
from metering.customer_prepaid_order import (
BillingPeriod,
BillingPeriodUnit,
CustomerPrepaidOrderApiClient,
create_customer_prepaid_order_payload,
)
```
#### [Customer Product Invoice](https://docs.amberflo.io/reference/get_payments-billing-customer-product-invoice)
```python
from metering.customer_product_invoice import (
CustomerProductInvoiceApiClient,
create_all_invoices_query,
create_latest_invoice_query,
create_invoice_query,
)
```
#### [Customer Product Plan](https://docs.amberflo.io/reference/post_payments-pricing-amberflo-customer-pricing)
```python
from metering.customer_product_plan import (
CustomerProductPlanApiClient,
create_customer_product_plan_payload,
)
```
### Exceptions
```python
from metering.exceptions import ApiError
```
### Logging
`amberflo-metering-python` uses the standard Python logging framework. By
default, logging is and set at the `WARNING` level.
The following loggers are used:
- `metering.ingest.producer`
- `metering.ingest.s3_client`
- `metering.ingest.consumer`
- `metering.session.ingest_session`
- `metering.session.api_session`
%prep
%autosetup -n amberflo-metering-python-3.1.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-amberflo-metering-python -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 3.1.0-1
- Package Spec generated
|