diff options
Diffstat (limited to 'python-ananke-causal.spec')
-rw-r--r-- | python-ananke-causal.spec | 298 |
1 files changed, 298 insertions, 0 deletions
diff --git a/python-ananke-causal.spec b/python-ananke-causal.spec new file mode 100644 index 0000000..0a6ede7 --- /dev/null +++ b/python-ananke-causal.spec @@ -0,0 +1,298 @@ +%global _empty_manifest_terminate_build 0 +Name: python-ananke-causal +Version: 0.3.3 +Release: 1 +Summary: Ananke, named for the Greek primordial goddess of necessity and causality, is a python package for causal inference using the language of graphical models. +License: Apache 2.0 +URL: https://gitlab.com/causal/ananke +Source0: https://mirrors.aliyun.com/pypi/web/packages/f3/d0/5eb32ed6eebd312b4f817d7bb6361359ca8066690ebdfc05d998e34888de/ananke_causal-0.3.3.tar.gz +BuildArch: noarch + +Requires: python3-scipy +Requires: python3-numpy +Requires: python3-pandas +Requires: python3-statsmodels +Requires: python3-pygraphviz +Requires: python3-pgmpy +Requires: python3-graphviz + +%description +# Ananke + +Visit the [website](https://ananke.readthedocs.io) to find out more. + +[Ananke](https://en.wikipedia.org/wiki/Ananke), named for the Greek +primordial goddess of necessity and causality, is a python package for +causal inference using the language of graphical models + +## Contributors + +* Rohit Bhattacharya +* Jaron Lee +* Razieh Nabi +* Preethi Prakash +* Ranjani Srinivasan + +Interested contributors should check out the [CONTRIBUTING.md](CONTRIBUTING.md) for further details. + +## Installation + +If graph visualization is not required then install via `pip`: + +``` +pip install ananke-causal +``` + +Alternatively, the package may be installed from gitlab by cloning and `cd` into the directory. Then, `poetry` (see https://python-poetry.org) can be used to install: + +``` +poetry install +``` + +### Install with graph visualization + + +If graphing support is required, it is necessary to install [graphviz](https://www.graphviz.org/download/). + + +#### Non M1 Mac instructions +Ubuntu: +```shell script +sudo apt install graphviz libgraphviz-dev pkg-config +``` + +Mac ([Homebrew](https://brew.sh/)): +```shell script +brew install graphviz +``` + +Fedora: +```shell script +sudo yum install graphviz +``` + +Once graphviz has been installed, then: + +```shell script +pip install ananke-causal[viz] # if pip is preferred + +poetry install --extras viz # if poetry is preferred +``` + +#### M1 Mac specific instructions + +If on M1 see this [issue](https://github.com/pygraphviz/pygraphviz/issues/398). The fix is to run the following before installing: +```shell script +brew install graphviz +python -m pip install \ + --global-option=build_ext \ + --global-option="-I$(brew --prefix graphviz)/include/" \ + --global-option="-L$(brew --prefix graphviz)/lib/" \ + pygraphviz +``` + + +%package -n python3-ananke-causal +Summary: Ananke, named for the Greek primordial goddess of necessity and causality, is a python package for causal inference using the language of graphical models. +Provides: python-ananke-causal +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-ananke-causal +# Ananke + +Visit the [website](https://ananke.readthedocs.io) to find out more. + +[Ananke](https://en.wikipedia.org/wiki/Ananke), named for the Greek +primordial goddess of necessity and causality, is a python package for +causal inference using the language of graphical models + +## Contributors + +* Rohit Bhattacharya +* Jaron Lee +* Razieh Nabi +* Preethi Prakash +* Ranjani Srinivasan + +Interested contributors should check out the [CONTRIBUTING.md](CONTRIBUTING.md) for further details. + +## Installation + +If graph visualization is not required then install via `pip`: + +``` +pip install ananke-causal +``` + +Alternatively, the package may be installed from gitlab by cloning and `cd` into the directory. Then, `poetry` (see https://python-poetry.org) can be used to install: + +``` +poetry install +``` + +### Install with graph visualization + + +If graphing support is required, it is necessary to install [graphviz](https://www.graphviz.org/download/). + + +#### Non M1 Mac instructions +Ubuntu: +```shell script +sudo apt install graphviz libgraphviz-dev pkg-config +``` + +Mac ([Homebrew](https://brew.sh/)): +```shell script +brew install graphviz +``` + +Fedora: +```shell script +sudo yum install graphviz +``` + +Once graphviz has been installed, then: + +```shell script +pip install ananke-causal[viz] # if pip is preferred + +poetry install --extras viz # if poetry is preferred +``` + +#### M1 Mac specific instructions + +If on M1 see this [issue](https://github.com/pygraphviz/pygraphviz/issues/398). The fix is to run the following before installing: +```shell script +brew install graphviz +python -m pip install \ + --global-option=build_ext \ + --global-option="-I$(brew --prefix graphviz)/include/" \ + --global-option="-L$(brew --prefix graphviz)/lib/" \ + pygraphviz +``` + + +%package help +Summary: Development documents and examples for ananke-causal +Provides: python3-ananke-causal-doc +%description help +# Ananke + +Visit the [website](https://ananke.readthedocs.io) to find out more. + +[Ananke](https://en.wikipedia.org/wiki/Ananke), named for the Greek +primordial goddess of necessity and causality, is a python package for +causal inference using the language of graphical models + +## Contributors + +* Rohit Bhattacharya +* Jaron Lee +* Razieh Nabi +* Preethi Prakash +* Ranjani Srinivasan + +Interested contributors should check out the [CONTRIBUTING.md](CONTRIBUTING.md) for further details. + +## Installation + +If graph visualization is not required then install via `pip`: + +``` +pip install ananke-causal +``` + +Alternatively, the package may be installed from gitlab by cloning and `cd` into the directory. Then, `poetry` (see https://python-poetry.org) can be used to install: + +``` +poetry install +``` + +### Install with graph visualization + + +If graphing support is required, it is necessary to install [graphviz](https://www.graphviz.org/download/). + + +#### Non M1 Mac instructions +Ubuntu: +```shell script +sudo apt install graphviz libgraphviz-dev pkg-config +``` + +Mac ([Homebrew](https://brew.sh/)): +```shell script +brew install graphviz +``` + +Fedora: +```shell script +sudo yum install graphviz +``` + +Once graphviz has been installed, then: + +```shell script +pip install ananke-causal[viz] # if pip is preferred + +poetry install --extras viz # if poetry is preferred +``` + +#### M1 Mac specific instructions + +If on M1 see this [issue](https://github.com/pygraphviz/pygraphviz/issues/398). The fix is to run the following before installing: +```shell script +brew install graphviz +python -m pip install \ + --global-option=build_ext \ + --global-option="-I$(brew --prefix graphviz)/include/" \ + --global-option="-L$(brew --prefix graphviz)/lib/" \ + pygraphviz +``` + + +%prep +%autosetup -n ananke_causal-0.3.3 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-ananke-causal -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.3-1 +- Package Spec generated |