1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
%global _empty_manifest_terminate_build 0
Name: python-anko
Version: 0.2.8
Release: 1
Summary: Toolkit for performing anomaly detection algorithm on time series.
License: MIT
URL: https://github.com/tanlin2013/anko
Source0: https://mirrors.aliyun.com/pypi/web/packages/67/e0/ee655313e2954e1865a8f1fe6d544d0912e7dc9fd838adcd681786fc3076/anko-0.2.8.tar.gz
BuildArch: noarch
%description

# anko
Toolkit for performing anomaly detection algorithm on 1D time series based on numpy, scipy.
Conventional approaches that based on statistical analysis have been implemented, with mainly two approaches included:
1. Normal Distribution
Data samples are presumably been generated by normal distribution, and therefore anomalous data points can be targeted by analysing the standard deviation.
2. Fitting Ansatz
Data samples are fitted by several ansatzs, and in accordance with the residual, anomalous data points can be selected.
Regarding model selections, models are adopted dynamically by performing normal test and by computing the (Akaike/Bayesian) information criterion.
By default, the algorithm will first try to fit in the data into normal distribution, if it passed [normal test](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html).
If this attempt suffers from the loss of convergence or it did not pass [normal test](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html) from begining,
then the algorithm will pass data into the second methods and try to execute all the available fitting ansatzs simultaneously.
The best fitting ansatz will be selected by information criterion, and finally the algorithm will pick up anomalous points in accordance with the residual.
[click here to see all available methods.](https://tanlin2013.github.io/anko/build/html/anko.html#anko.anomaly_detector.AnomalyDetector.models)
Future development will also include methods that are based on deep learning techniques, such as isolation forest, support vector machine, etc.
## Requirements
* python >= 3.6.0
* numpy >= 1.16.4
* scipy >= 1.2.1
## Installation
```
pip install anko
```
For current release version please refer to [PyPI - anko homepage](https://pypi.org/project/anko/).
## Documentation
For details about anko API, see the [reference documentation](https://tanlin2013.github.io/anko/index.html).
## Jupyter Notebook Tutorial (in dev)
Run **anko_tutorial.ipynb** on your local Jupyter Notebook or host on [google colab](https://colab.research.google.com/github/tanlin2013/anko/blob/master/anko_tutorial.ipynb).
## Basic Usage
1. Call AnomalyDetector
```
from anko.anomaly_detector import AnomalyDetector
agent = AnomalyDetector(t, series)
```
2. Define policies and threshold values (optional)
```
agent.thres_params["linregress_res"] = 1.5
agent.apply_policies["z_normalization"] = True
agent.apply_policies["info_criterion"] = 'AIC'
```
for the use of [**AnomalyDetector.thres_params**](https://tanlin2013.github.io/anko/build/html/anko.html#anko.anomaly_detector.AnomalyDetector.thres_params)
and [**AnomalyDetector.apply_policies**](https://tanlin2013.github.io/anko/build/html/anko.html#anko.anomaly_detector.AnomalyDetector.apply_policies),
please refer to the documentation.
3. Run check
```
check_result = agent.check()
```
The type of output **check_result** is [**CheckResult**](https://tanlin2013.github.io/anko/build/html/anko.html#anko.anomaly_detector.CheckResult), which is basically a dictionary that contains the following attributes:
> model: 'increase_step_func'
> popt: [220.3243250055105, 249.03846355234577, 74.00000107457113]
> perr: [0.4247789247961187, 0.7166253174634686, 0.0]
> anomalous_data: [(59, 209)]
> residual: [10.050378152592119]
> extra_info: ['Info: AnomalyDetector is using z normalization.', 'Info: There are more than 1 discontinuous points detected.']
* model (str): The best fit model been selected by algorithm.
* popt (list): Estimated fitting parameters.
* perr (list): Corresponding errors of popt.
* anomalous_data (list\[tuple(float, float)\]): Return a list of anomalous data points (t, series(t)), or an empty list if all data points are in order.
* residual (list): Residual of anomalous data.
* extra_info (list): All convergence errors, warnings, informations during the execution are stored here.
## Run Test
```
python -m unittest discover -s test -p '*_test.py'
```
or simply
```
make test
```
%package -n python3-anko
Summary: Toolkit for performing anomaly detection algorithm on time series.
Provides: python-anko
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-anko

# anko
Toolkit for performing anomaly detection algorithm on 1D time series based on numpy, scipy.
Conventional approaches that based on statistical analysis have been implemented, with mainly two approaches included:
1. Normal Distribution
Data samples are presumably been generated by normal distribution, and therefore anomalous data points can be targeted by analysing the standard deviation.
2. Fitting Ansatz
Data samples are fitted by several ansatzs, and in accordance with the residual, anomalous data points can be selected.
Regarding model selections, models are adopted dynamically by performing normal test and by computing the (Akaike/Bayesian) information criterion.
By default, the algorithm will first try to fit in the data into normal distribution, if it passed [normal test](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html).
If this attempt suffers from the loss of convergence or it did not pass [normal test](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html) from begining,
then the algorithm will pass data into the second methods and try to execute all the available fitting ansatzs simultaneously.
The best fitting ansatz will be selected by information criterion, and finally the algorithm will pick up anomalous points in accordance with the residual.
[click here to see all available methods.](https://tanlin2013.github.io/anko/build/html/anko.html#anko.anomaly_detector.AnomalyDetector.models)
Future development will also include methods that are based on deep learning techniques, such as isolation forest, support vector machine, etc.
## Requirements
* python >= 3.6.0
* numpy >= 1.16.4
* scipy >= 1.2.1
## Installation
```
pip install anko
```
For current release version please refer to [PyPI - anko homepage](https://pypi.org/project/anko/).
## Documentation
For details about anko API, see the [reference documentation](https://tanlin2013.github.io/anko/index.html).
## Jupyter Notebook Tutorial (in dev)
Run **anko_tutorial.ipynb** on your local Jupyter Notebook or host on [google colab](https://colab.research.google.com/github/tanlin2013/anko/blob/master/anko_tutorial.ipynb).
## Basic Usage
1. Call AnomalyDetector
```
from anko.anomaly_detector import AnomalyDetector
agent = AnomalyDetector(t, series)
```
2. Define policies and threshold values (optional)
```
agent.thres_params["linregress_res"] = 1.5
agent.apply_policies["z_normalization"] = True
agent.apply_policies["info_criterion"] = 'AIC'
```
for the use of [**AnomalyDetector.thres_params**](https://tanlin2013.github.io/anko/build/html/anko.html#anko.anomaly_detector.AnomalyDetector.thres_params)
and [**AnomalyDetector.apply_policies**](https://tanlin2013.github.io/anko/build/html/anko.html#anko.anomaly_detector.AnomalyDetector.apply_policies),
please refer to the documentation.
3. Run check
```
check_result = agent.check()
```
The type of output **check_result** is [**CheckResult**](https://tanlin2013.github.io/anko/build/html/anko.html#anko.anomaly_detector.CheckResult), which is basically a dictionary that contains the following attributes:
> model: 'increase_step_func'
> popt: [220.3243250055105, 249.03846355234577, 74.00000107457113]
> perr: [0.4247789247961187, 0.7166253174634686, 0.0]
> anomalous_data: [(59, 209)]
> residual: [10.050378152592119]
> extra_info: ['Info: AnomalyDetector is using z normalization.', 'Info: There are more than 1 discontinuous points detected.']
* model (str): The best fit model been selected by algorithm.
* popt (list): Estimated fitting parameters.
* perr (list): Corresponding errors of popt.
* anomalous_data (list\[tuple(float, float)\]): Return a list of anomalous data points (t, series(t)), or an empty list if all data points are in order.
* residual (list): Residual of anomalous data.
* extra_info (list): All convergence errors, warnings, informations during the execution are stored here.
## Run Test
```
python -m unittest discover -s test -p '*_test.py'
```
or simply
```
make test
```
%package help
Summary: Development documents and examples for anko
Provides: python3-anko-doc
%description help

# anko
Toolkit for performing anomaly detection algorithm on 1D time series based on numpy, scipy.
Conventional approaches that based on statistical analysis have been implemented, with mainly two approaches included:
1. Normal Distribution
Data samples are presumably been generated by normal distribution, and therefore anomalous data points can be targeted by analysing the standard deviation.
2. Fitting Ansatz
Data samples are fitted by several ansatzs, and in accordance with the residual, anomalous data points can be selected.
Regarding model selections, models are adopted dynamically by performing normal test and by computing the (Akaike/Bayesian) information criterion.
By default, the algorithm will first try to fit in the data into normal distribution, if it passed [normal test](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html).
If this attempt suffers from the loss of convergence or it did not pass [normal test](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html) from begining,
then the algorithm will pass data into the second methods and try to execute all the available fitting ansatzs simultaneously.
The best fitting ansatz will be selected by information criterion, and finally the algorithm will pick up anomalous points in accordance with the residual.
[click here to see all available methods.](https://tanlin2013.github.io/anko/build/html/anko.html#anko.anomaly_detector.AnomalyDetector.models)
Future development will also include methods that are based on deep learning techniques, such as isolation forest, support vector machine, etc.
## Requirements
* python >= 3.6.0
* numpy >= 1.16.4
* scipy >= 1.2.1
## Installation
```
pip install anko
```
For current release version please refer to [PyPI - anko homepage](https://pypi.org/project/anko/).
## Documentation
For details about anko API, see the [reference documentation](https://tanlin2013.github.io/anko/index.html).
## Jupyter Notebook Tutorial (in dev)
Run **anko_tutorial.ipynb** on your local Jupyter Notebook or host on [google colab](https://colab.research.google.com/github/tanlin2013/anko/blob/master/anko_tutorial.ipynb).
## Basic Usage
1. Call AnomalyDetector
```
from anko.anomaly_detector import AnomalyDetector
agent = AnomalyDetector(t, series)
```
2. Define policies and threshold values (optional)
```
agent.thres_params["linregress_res"] = 1.5
agent.apply_policies["z_normalization"] = True
agent.apply_policies["info_criterion"] = 'AIC'
```
for the use of [**AnomalyDetector.thres_params**](https://tanlin2013.github.io/anko/build/html/anko.html#anko.anomaly_detector.AnomalyDetector.thres_params)
and [**AnomalyDetector.apply_policies**](https://tanlin2013.github.io/anko/build/html/anko.html#anko.anomaly_detector.AnomalyDetector.apply_policies),
please refer to the documentation.
3. Run check
```
check_result = agent.check()
```
The type of output **check_result** is [**CheckResult**](https://tanlin2013.github.io/anko/build/html/anko.html#anko.anomaly_detector.CheckResult), which is basically a dictionary that contains the following attributes:
> model: 'increase_step_func'
> popt: [220.3243250055105, 249.03846355234577, 74.00000107457113]
> perr: [0.4247789247961187, 0.7166253174634686, 0.0]
> anomalous_data: [(59, 209)]
> residual: [10.050378152592119]
> extra_info: ['Info: AnomalyDetector is using z normalization.', 'Info: There are more than 1 discontinuous points detected.']
* model (str): The best fit model been selected by algorithm.
* popt (list): Estimated fitting parameters.
* perr (list): Corresponding errors of popt.
* anomalous_data (list\[tuple(float, float)\]): Return a list of anomalous data points (t, series(t)), or an empty list if all data points are in order.
* residual (list): Residual of anomalous data.
* extra_info (list): All convergence errors, warnings, informations during the execution are stored here.
## Run Test
```
python -m unittest discover -s test -p '*_test.py'
```
or simply
```
make test
```
%prep
%autosetup -n anko-0.2.8
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-anko -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.8-1
- Package Spec generated
|