summaryrefslogtreecommitdiff
path: root/python-antspymm.spec
blob: a13374178eb05f6e151ab7a503c0e1173775babd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
%global _empty_manifest_terminate_build 0
Name:		python-antspymm
Version:	0.9.9
Release:	1
Summary:	multi-channel/time-series medical image processing with antspyx
License:	Apache 2.0
URL:		https://github.com/stnava/ANTsPyMM
Source0:	https://mirrors.aliyun.com/pypi/web/packages/26/75/85afa25a586deb13c15fc7938147c641bddb0f83f8776b5a601107a4965b/antspymm-0.9.9.tar.gz
BuildArch:	noarch

Requires:	python3-h5py
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-antspyx
Requires:	python3-antspyt1w
Requires:	python3-pathlib
Requires:	python3-dipy
Requires:	python3-nibabel
Requires:	python3-scipy
Requires:	python3-siq
Requires:	python3-sklearn

%description
# ANTsPyMM

## processing utilities for timeseries/multichannel images - mostly neuroimaging

the outputs of these processes can be used for data inspection/cleaning/triage
as well for interrogating hypotheses.

this package also keeps track of the latest preferred algorithm variations for
production environments.

install the `dev` version by calling (within the source directory):

```
python setup.py install
```

or install the latest release via 

```
pip install antspymm
```

# what this will do

ANTsPyMM will process several types of brain MRI into tabular form as well as normalized (standard template) space.  The processing includes:

* T1wHier uses hierarchical processing from ANTsPyT1w organized around these measurements

    * CIT168 template 10.1101/211201

    * Desikan Killiany Tourville (DKT) 10.3389/fnins.2012.00171

    * basal forebrain (Avants et al HBM 2022 abstract)

    * other regions (egMTL) 10.1101/2023.01.17.23284693

    * also produces jacobian data

* rsfMRI: resting state functional MRI

    * uses 10.1016/j.conb.2012.12.009 to estimate network specific correlations

    * f/ALFF 10.1016/j.jneumeth.2008.04.012

* NM2DMT: neuromelanin mid-brain images

    * CIT168 template 10.1101/211201

* DTI: DWI diffusion weighted images organized via:

    * CIT168 template 10.1101/211201

    * JHU atlases 10.1016/j.neuroimage.2008.07.009  10.1016/j.neuroimage.2007.07.053

    * DKT for cortical to cortical tractography estimates based on DiPy

* T2Flair: flair for white matter hyperintensity

    * https://pubmed.ncbi.nlm.nih.gov/30908194/

    * https://pubmed.ncbi.nlm.nih.gov/30125711/

    * https://pubmed.ncbi.nlm.nih.gov/35088930/

* T1w: voxel-based cortical thickness (DiReCT) 10.1016/j.neuroimage.2008.12.016

Results of these processes are plentiful; processing for a single subject
will all modalities will take around 2 hours on an average laptop.

documentation of functions [here](http://htmlpreview.github.io/?https://github.com/stnava/ANTsPyMM/blob/main/docs/antspymm/mm.html).


achieved through four steps (recommended approach):

1. organize data in NRG format

2. perform blind QC

3. compute outlierness per modality and select optimally matched modalities ( steps 3.1 and 3.2 )

4. run the main antspymm function

# first time setup

```python
import antspyt1w
import antspymm
antspyt1w.get_data(force_download=True)
antspymm.get_data(force_download=True)
```

NOTE: `get_data` has a `force_download` option to make sure the latest
package data is installed.

NOTE: some functions in `antspynet` will download deep network model weights on the fly.  if one is containerizing, then it would be worth running a test case through in the container to make sure all the relevant weights are pre-downloaded.

# example processing

see the latest help but this snippet gives an idea of how one might use the package:

```python
import os
os.environ["TF_NUM_INTEROP_THREADS"] = "8"
os.environ["TF_NUM_INTRAOP_THREADS"] = "8"
os.environ["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = "8"

import antspymm
import antspyt1w
import antspynet
import ants

... i/o code here ...

tabPro, normPro = antspymm.mm(
    t1,
    hier,
    nm_image_list = mynm,
    rsf_image = rsf,
    dw_image = dwi,
    bvals = bval_fname,
    bvecs = bvec_fname,
    flair_image = flair,
    do_tractography=False,
    do_kk=False,
    do_normalization=True,
    verbose=True )

antspymm.write_mm( '/tmp/test_output', t1wide, tabPro, normPro )

```

## blind quality control

this package also provides tools to identify the *best* multi-modality image set at a given visit.

the code below provides guidance on how to automatically qc, filter and match multiple modality images at each time point.  these tools are based on standard unsupervised approaches and are not perfect so we recommend using the associated plotting/visualization techniques to check the quality characterizations for each modality.

```python
## run the qc on all images - requires a relatively large sample per modality to be effective
## then aggregate
qcdf=pd.DataFrame()
for fn in fns:
  qcdf=pd.concat( [qcdf,antspymm.blind_image_assessment(fn)], axis=0)
qcdfa=antspymm.average_blind_qc_by_modality(qcdf,verbose=True) ## reduce the time series qc
qcdfaol=antspymm.outlierness_by_modality(qcdfa) # estimate outlier scores
print( qcdfaol.shape )
print( qcdfaol.keys )
matched_mm_data=antspymm.match_modalities( qcdfaol  )
```

or just get modality-specific outlierness "by hand" then match `mm`:

```python
import antspymm
import pandas as pd
mymods = antspymm.get_valid_modalities( )
alldf = pd.DataFrame()
for n in range(len(mymods)):
    m=mymods[n]
    jj=antspymm.collect_blind_qc_by_modality("qc/*"+m+"*csv")
    jjj=antspymm.average_blind_qc_by_modality(jj,verbose=False).dropna(axis=1) ## reduce the time series qc
    jjj=antspymm.outlierness_by_modality( jjj, verbose=False)
    alldf = pd.concat( [alldf, jjj ], axis=0 )
    jjj.to_csv( "mm_outlierness_"+m+".csv")
    print(m+" done")
# write the joined data out
alldf.to_csv( "mm_outlierness.csv", index=False )
# find the best mm collection
matched_mm_data=antspymm.match_modalities( alldf, verbose=True )
matched_mm_data.to_csv( "matched_mm_data.csv", index=False )
matched_mm_data['negative_outlier_factor'] = 1.0 - matched_mm_data['ol_loop'].astype("float")
matched_mm_data2 = antspymm.highest_quality_repeat( matched_mm_data, 'subjectID', 'date', qualityvar='negative_outlier_factor')
matched_mm_data2.to_csv( "matched_mm_data2.csv", index=False )
```

## an example on open neuro (BIDS) data

from : [ANT PD](https://openneuro.org/datasets/ds001907/versions/3.0.2)

```
imagesBIDS/
└── ANTPD
    └── sub-RC4125
        └── ses-1
            ├── anat
            │   ├── sub-RC4125_ses-1_T1w.json
            │   └── sub-RC4125_ses-1_T1w.nii.gz
            ├── dwi
            │   ├── sub-RC4125_ses-1_dwi.bval
            │   ├── sub-RC4125_ses-1_dwi.bvec
            │   ├── sub-RC4125_ses-1_dwi.json
            │   └── sub-RC4125_ses-1_dwi.nii.gz
            └── func
                ├── sub-RC4125_ses-1_task-ANT_run-1_bold.json
                ├── sub-RC4125_ses-1_task-ANT_run-1_bold.nii.gz
                └── sub-RC4125_ses-1_task-ANT_run-1_events.tsv
```

```python
import antspymm
import pandas as pd
import glob as glob
fns = glob.glob("imagesBIDS/ANTPD/sub-RC4125/ses-*/*/*gz")
fns.sort()
randid='000' # BIDS does not have unique image ids - so we assign one
studycsv = antspymm.generate_mm_dataframe(
    'ANTPD',
    'sub-RC4125',
    'ses-1',
    randid,
    'T1w',
    '/Users/stnava/data/openneuro/imagesBIDS/',
    '/Users/stnava/data/openneuro/processed/',
    t1_filename=fns[0],
    dti_filenames=[fns[1]],
    rsf_filenames=[fns[2]])
studycsv2 = studycsv.dropna(axis=1)
mmrun = antspymm.mm_csv( studycsv2, mysep='_' )
```

## NRG example

NRG format details [here](https://htmlpreview.github.io/?https://github.com/stnava/biomedicalDataOrganization/blob/master/src/nrg_data_organization_summary.html)

```
imagesNRG/
└── ANTPD
    └── sub-RC4125
        └── ses-1
            ├── DTI
            │   └── 000
            │       ├── ANTPD_sub-RC4125_ses-1_DTI_000.bval
            │       ├── ANTPD_sub-RC4125_ses-1_DTI_000.bvec
            │       ├── ANTPD_sub-RC4125_ses-1_DTI_000.json
            │       └── ANTPD_sub-RC4125_ses-1_DTI_000.nii.gz
            ├── T1w
            │   └── 000
            │       └── ANTPD_sub-RC4125_ses-1_T1w_000.nii.gz
            └── rsfMRI
                └── 000
                    └── ANTPD_sub-RC4125_ses-1_rsfMRI_000.nii.gz
```



```python
import antspymm
import pandas as pd
import glob as glob
t1fn=glob.glob("imagesNRG/ANTPD/sub-RC4125/ses-*/*/*/*T1w*gz")[0]
# flair also takes a single image
dtfn=glob.glob("imagesNRG/ANTPD/sub-RC4125/ses-*/*/*/*DTI*gz")
rsfn=glob.glob("imagesNRG/ANTPD/sub-RC4125/ses-*/*/*/*rsfMRI*gz")
studycsv = antspymm.generate_mm_dataframe(
    'ANTPD',
    'sub-RC4125',
    'ses-1',
    '000',
    'T1w',
    '/Users/stnava/data/openneuro/imagesNRG/',
    '/Users/stnava/data/openneuro/processed/',
    t1fn,
    rsf_filenames=rsfn,
    dti_filenames=dtfn
)
studycsv2 = studycsv.dropna(axis=1)
mmrun = antspymm.mm_csv( studycsv2, mysep='_' )
```

## useful tools for converting dicom to nifti

* [dcm2niix](https://github.com/rordenlab/dcm2niix)

* [dicom2nifti](https://dicom2nifti.readthedocs.io/en/latest/)

```python
import dicom2nifti

dicom2nifti.convert_directory(dicom_directory, output_folder, compression=True, reorient=True)
```

* [simpleitk](https://pypi.org/project/SimpleITK/)

```python
import SimpleITK as sitk
import sys
import os
import glob as glob
import ants
dd='dicom'
oo='dicom2nifti'
folders=glob.glob('dicom/*')
k=0
for f in folders:
    print(f)    
    reader = sitk.ImageSeriesReader()
    ff=glob.glob(f+"/*")
    dicom_names = reader.GetGDCMSeriesFileNames(ff[0])
    if len(ff) > 0:
        fnout='dicom2nifti/image_'+str(k).zfill(4)+'.nii.gz'
        if not exists(fnout):
            failed=False
            reader.SetFileNames(dicom_names)
            try:
                image = reader.Execute()
            except:
                failed=True
                pass
            if not failed:
                size = image.GetSpacing()
                print( image.GetMetaDataKeys( ) )
                print( size )
                sitk.WriteImage(image, fnout )
                img=ants.image_read( fnout )
                img=ants.iMath(img,'TruncateIntensity',0.02,0.98)
                ants.plot( img, nslices=21,ncol=7,axis=2, crop=True )
        else:
            print(f+ ": "+'empty')
    k=k+1
```

## build docs

```
pdoc -o ./docs antspymm --html
```

## to publish a release

```
rm -r -f build/ antspymm.egg-info/ dist/
python3 setup.py sdist bdist_wheel
python3 -m twine upload -u username -p password  dist/*
```


%package -n python3-antspymm
Summary:	multi-channel/time-series medical image processing with antspyx
Provides:	python-antspymm
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-antspymm
# ANTsPyMM

## processing utilities for timeseries/multichannel images - mostly neuroimaging

the outputs of these processes can be used for data inspection/cleaning/triage
as well for interrogating hypotheses.

this package also keeps track of the latest preferred algorithm variations for
production environments.

install the `dev` version by calling (within the source directory):

```
python setup.py install
```

or install the latest release via 

```
pip install antspymm
```

# what this will do

ANTsPyMM will process several types of brain MRI into tabular form as well as normalized (standard template) space.  The processing includes:

* T1wHier uses hierarchical processing from ANTsPyT1w organized around these measurements

    * CIT168 template 10.1101/211201

    * Desikan Killiany Tourville (DKT) 10.3389/fnins.2012.00171

    * basal forebrain (Avants et al HBM 2022 abstract)

    * other regions (egMTL) 10.1101/2023.01.17.23284693

    * also produces jacobian data

* rsfMRI: resting state functional MRI

    * uses 10.1016/j.conb.2012.12.009 to estimate network specific correlations

    * f/ALFF 10.1016/j.jneumeth.2008.04.012

* NM2DMT: neuromelanin mid-brain images

    * CIT168 template 10.1101/211201

* DTI: DWI diffusion weighted images organized via:

    * CIT168 template 10.1101/211201

    * JHU atlases 10.1016/j.neuroimage.2008.07.009  10.1016/j.neuroimage.2007.07.053

    * DKT for cortical to cortical tractography estimates based on DiPy

* T2Flair: flair for white matter hyperintensity

    * https://pubmed.ncbi.nlm.nih.gov/30908194/

    * https://pubmed.ncbi.nlm.nih.gov/30125711/

    * https://pubmed.ncbi.nlm.nih.gov/35088930/

* T1w: voxel-based cortical thickness (DiReCT) 10.1016/j.neuroimage.2008.12.016

Results of these processes are plentiful; processing for a single subject
will all modalities will take around 2 hours on an average laptop.

documentation of functions [here](http://htmlpreview.github.io/?https://github.com/stnava/ANTsPyMM/blob/main/docs/antspymm/mm.html).


achieved through four steps (recommended approach):

1. organize data in NRG format

2. perform blind QC

3. compute outlierness per modality and select optimally matched modalities ( steps 3.1 and 3.2 )

4. run the main antspymm function

# first time setup

```python
import antspyt1w
import antspymm
antspyt1w.get_data(force_download=True)
antspymm.get_data(force_download=True)
```

NOTE: `get_data` has a `force_download` option to make sure the latest
package data is installed.

NOTE: some functions in `antspynet` will download deep network model weights on the fly.  if one is containerizing, then it would be worth running a test case through in the container to make sure all the relevant weights are pre-downloaded.

# example processing

see the latest help but this snippet gives an idea of how one might use the package:

```python
import os
os.environ["TF_NUM_INTEROP_THREADS"] = "8"
os.environ["TF_NUM_INTRAOP_THREADS"] = "8"
os.environ["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = "8"

import antspymm
import antspyt1w
import antspynet
import ants

... i/o code here ...

tabPro, normPro = antspymm.mm(
    t1,
    hier,
    nm_image_list = mynm,
    rsf_image = rsf,
    dw_image = dwi,
    bvals = bval_fname,
    bvecs = bvec_fname,
    flair_image = flair,
    do_tractography=False,
    do_kk=False,
    do_normalization=True,
    verbose=True )

antspymm.write_mm( '/tmp/test_output', t1wide, tabPro, normPro )

```

## blind quality control

this package also provides tools to identify the *best* multi-modality image set at a given visit.

the code below provides guidance on how to automatically qc, filter and match multiple modality images at each time point.  these tools are based on standard unsupervised approaches and are not perfect so we recommend using the associated plotting/visualization techniques to check the quality characterizations for each modality.

```python
## run the qc on all images - requires a relatively large sample per modality to be effective
## then aggregate
qcdf=pd.DataFrame()
for fn in fns:
  qcdf=pd.concat( [qcdf,antspymm.blind_image_assessment(fn)], axis=0)
qcdfa=antspymm.average_blind_qc_by_modality(qcdf,verbose=True) ## reduce the time series qc
qcdfaol=antspymm.outlierness_by_modality(qcdfa) # estimate outlier scores
print( qcdfaol.shape )
print( qcdfaol.keys )
matched_mm_data=antspymm.match_modalities( qcdfaol  )
```

or just get modality-specific outlierness "by hand" then match `mm`:

```python
import antspymm
import pandas as pd
mymods = antspymm.get_valid_modalities( )
alldf = pd.DataFrame()
for n in range(len(mymods)):
    m=mymods[n]
    jj=antspymm.collect_blind_qc_by_modality("qc/*"+m+"*csv")
    jjj=antspymm.average_blind_qc_by_modality(jj,verbose=False).dropna(axis=1) ## reduce the time series qc
    jjj=antspymm.outlierness_by_modality( jjj, verbose=False)
    alldf = pd.concat( [alldf, jjj ], axis=0 )
    jjj.to_csv( "mm_outlierness_"+m+".csv")
    print(m+" done")
# write the joined data out
alldf.to_csv( "mm_outlierness.csv", index=False )
# find the best mm collection
matched_mm_data=antspymm.match_modalities( alldf, verbose=True )
matched_mm_data.to_csv( "matched_mm_data.csv", index=False )
matched_mm_data['negative_outlier_factor'] = 1.0 - matched_mm_data['ol_loop'].astype("float")
matched_mm_data2 = antspymm.highest_quality_repeat( matched_mm_data, 'subjectID', 'date', qualityvar='negative_outlier_factor')
matched_mm_data2.to_csv( "matched_mm_data2.csv", index=False )
```

## an example on open neuro (BIDS) data

from : [ANT PD](https://openneuro.org/datasets/ds001907/versions/3.0.2)

```
imagesBIDS/
└── ANTPD
    └── sub-RC4125
        └── ses-1
            ├── anat
            │   ├── sub-RC4125_ses-1_T1w.json
            │   └── sub-RC4125_ses-1_T1w.nii.gz
            ├── dwi
            │   ├── sub-RC4125_ses-1_dwi.bval
            │   ├── sub-RC4125_ses-1_dwi.bvec
            │   ├── sub-RC4125_ses-1_dwi.json
            │   └── sub-RC4125_ses-1_dwi.nii.gz
            └── func
                ├── sub-RC4125_ses-1_task-ANT_run-1_bold.json
                ├── sub-RC4125_ses-1_task-ANT_run-1_bold.nii.gz
                └── sub-RC4125_ses-1_task-ANT_run-1_events.tsv
```

```python
import antspymm
import pandas as pd
import glob as glob
fns = glob.glob("imagesBIDS/ANTPD/sub-RC4125/ses-*/*/*gz")
fns.sort()
randid='000' # BIDS does not have unique image ids - so we assign one
studycsv = antspymm.generate_mm_dataframe(
    'ANTPD',
    'sub-RC4125',
    'ses-1',
    randid,
    'T1w',
    '/Users/stnava/data/openneuro/imagesBIDS/',
    '/Users/stnava/data/openneuro/processed/',
    t1_filename=fns[0],
    dti_filenames=[fns[1]],
    rsf_filenames=[fns[2]])
studycsv2 = studycsv.dropna(axis=1)
mmrun = antspymm.mm_csv( studycsv2, mysep='_' )
```

## NRG example

NRG format details [here](https://htmlpreview.github.io/?https://github.com/stnava/biomedicalDataOrganization/blob/master/src/nrg_data_organization_summary.html)

```
imagesNRG/
└── ANTPD
    └── sub-RC4125
        └── ses-1
            ├── DTI
            │   └── 000
            │       ├── ANTPD_sub-RC4125_ses-1_DTI_000.bval
            │       ├── ANTPD_sub-RC4125_ses-1_DTI_000.bvec
            │       ├── ANTPD_sub-RC4125_ses-1_DTI_000.json
            │       └── ANTPD_sub-RC4125_ses-1_DTI_000.nii.gz
            ├── T1w
            │   └── 000
            │       └── ANTPD_sub-RC4125_ses-1_T1w_000.nii.gz
            └── rsfMRI
                └── 000
                    └── ANTPD_sub-RC4125_ses-1_rsfMRI_000.nii.gz
```



```python
import antspymm
import pandas as pd
import glob as glob
t1fn=glob.glob("imagesNRG/ANTPD/sub-RC4125/ses-*/*/*/*T1w*gz")[0]
# flair also takes a single image
dtfn=glob.glob("imagesNRG/ANTPD/sub-RC4125/ses-*/*/*/*DTI*gz")
rsfn=glob.glob("imagesNRG/ANTPD/sub-RC4125/ses-*/*/*/*rsfMRI*gz")
studycsv = antspymm.generate_mm_dataframe(
    'ANTPD',
    'sub-RC4125',
    'ses-1',
    '000',
    'T1w',
    '/Users/stnava/data/openneuro/imagesNRG/',
    '/Users/stnava/data/openneuro/processed/',
    t1fn,
    rsf_filenames=rsfn,
    dti_filenames=dtfn
)
studycsv2 = studycsv.dropna(axis=1)
mmrun = antspymm.mm_csv( studycsv2, mysep='_' )
```

## useful tools for converting dicom to nifti

* [dcm2niix](https://github.com/rordenlab/dcm2niix)

* [dicom2nifti](https://dicom2nifti.readthedocs.io/en/latest/)

```python
import dicom2nifti

dicom2nifti.convert_directory(dicom_directory, output_folder, compression=True, reorient=True)
```

* [simpleitk](https://pypi.org/project/SimpleITK/)

```python
import SimpleITK as sitk
import sys
import os
import glob as glob
import ants
dd='dicom'
oo='dicom2nifti'
folders=glob.glob('dicom/*')
k=0
for f in folders:
    print(f)    
    reader = sitk.ImageSeriesReader()
    ff=glob.glob(f+"/*")
    dicom_names = reader.GetGDCMSeriesFileNames(ff[0])
    if len(ff) > 0:
        fnout='dicom2nifti/image_'+str(k).zfill(4)+'.nii.gz'
        if not exists(fnout):
            failed=False
            reader.SetFileNames(dicom_names)
            try:
                image = reader.Execute()
            except:
                failed=True
                pass
            if not failed:
                size = image.GetSpacing()
                print( image.GetMetaDataKeys( ) )
                print( size )
                sitk.WriteImage(image, fnout )
                img=ants.image_read( fnout )
                img=ants.iMath(img,'TruncateIntensity',0.02,0.98)
                ants.plot( img, nslices=21,ncol=7,axis=2, crop=True )
        else:
            print(f+ ": "+'empty')
    k=k+1
```

## build docs

```
pdoc -o ./docs antspymm --html
```

## to publish a release

```
rm -r -f build/ antspymm.egg-info/ dist/
python3 setup.py sdist bdist_wheel
python3 -m twine upload -u username -p password  dist/*
```


%package help
Summary:	Development documents and examples for antspymm
Provides:	python3-antspymm-doc
%description help
# ANTsPyMM

## processing utilities for timeseries/multichannel images - mostly neuroimaging

the outputs of these processes can be used for data inspection/cleaning/triage
as well for interrogating hypotheses.

this package also keeps track of the latest preferred algorithm variations for
production environments.

install the `dev` version by calling (within the source directory):

```
python setup.py install
```

or install the latest release via 

```
pip install antspymm
```

# what this will do

ANTsPyMM will process several types of brain MRI into tabular form as well as normalized (standard template) space.  The processing includes:

* T1wHier uses hierarchical processing from ANTsPyT1w organized around these measurements

    * CIT168 template 10.1101/211201

    * Desikan Killiany Tourville (DKT) 10.3389/fnins.2012.00171

    * basal forebrain (Avants et al HBM 2022 abstract)

    * other regions (egMTL) 10.1101/2023.01.17.23284693

    * also produces jacobian data

* rsfMRI: resting state functional MRI

    * uses 10.1016/j.conb.2012.12.009 to estimate network specific correlations

    * f/ALFF 10.1016/j.jneumeth.2008.04.012

* NM2DMT: neuromelanin mid-brain images

    * CIT168 template 10.1101/211201

* DTI: DWI diffusion weighted images organized via:

    * CIT168 template 10.1101/211201

    * JHU atlases 10.1016/j.neuroimage.2008.07.009  10.1016/j.neuroimage.2007.07.053

    * DKT for cortical to cortical tractography estimates based on DiPy

* T2Flair: flair for white matter hyperintensity

    * https://pubmed.ncbi.nlm.nih.gov/30908194/

    * https://pubmed.ncbi.nlm.nih.gov/30125711/

    * https://pubmed.ncbi.nlm.nih.gov/35088930/

* T1w: voxel-based cortical thickness (DiReCT) 10.1016/j.neuroimage.2008.12.016

Results of these processes are plentiful; processing for a single subject
will all modalities will take around 2 hours on an average laptop.

documentation of functions [here](http://htmlpreview.github.io/?https://github.com/stnava/ANTsPyMM/blob/main/docs/antspymm/mm.html).


achieved through four steps (recommended approach):

1. organize data in NRG format

2. perform blind QC

3. compute outlierness per modality and select optimally matched modalities ( steps 3.1 and 3.2 )

4. run the main antspymm function

# first time setup

```python
import antspyt1w
import antspymm
antspyt1w.get_data(force_download=True)
antspymm.get_data(force_download=True)
```

NOTE: `get_data` has a `force_download` option to make sure the latest
package data is installed.

NOTE: some functions in `antspynet` will download deep network model weights on the fly.  if one is containerizing, then it would be worth running a test case through in the container to make sure all the relevant weights are pre-downloaded.

# example processing

see the latest help but this snippet gives an idea of how one might use the package:

```python
import os
os.environ["TF_NUM_INTEROP_THREADS"] = "8"
os.environ["TF_NUM_INTRAOP_THREADS"] = "8"
os.environ["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = "8"

import antspymm
import antspyt1w
import antspynet
import ants

... i/o code here ...

tabPro, normPro = antspymm.mm(
    t1,
    hier,
    nm_image_list = mynm,
    rsf_image = rsf,
    dw_image = dwi,
    bvals = bval_fname,
    bvecs = bvec_fname,
    flair_image = flair,
    do_tractography=False,
    do_kk=False,
    do_normalization=True,
    verbose=True )

antspymm.write_mm( '/tmp/test_output', t1wide, tabPro, normPro )

```

## blind quality control

this package also provides tools to identify the *best* multi-modality image set at a given visit.

the code below provides guidance on how to automatically qc, filter and match multiple modality images at each time point.  these tools are based on standard unsupervised approaches and are not perfect so we recommend using the associated plotting/visualization techniques to check the quality characterizations for each modality.

```python
## run the qc on all images - requires a relatively large sample per modality to be effective
## then aggregate
qcdf=pd.DataFrame()
for fn in fns:
  qcdf=pd.concat( [qcdf,antspymm.blind_image_assessment(fn)], axis=0)
qcdfa=antspymm.average_blind_qc_by_modality(qcdf,verbose=True) ## reduce the time series qc
qcdfaol=antspymm.outlierness_by_modality(qcdfa) # estimate outlier scores
print( qcdfaol.shape )
print( qcdfaol.keys )
matched_mm_data=antspymm.match_modalities( qcdfaol  )
```

or just get modality-specific outlierness "by hand" then match `mm`:

```python
import antspymm
import pandas as pd
mymods = antspymm.get_valid_modalities( )
alldf = pd.DataFrame()
for n in range(len(mymods)):
    m=mymods[n]
    jj=antspymm.collect_blind_qc_by_modality("qc/*"+m+"*csv")
    jjj=antspymm.average_blind_qc_by_modality(jj,verbose=False).dropna(axis=1) ## reduce the time series qc
    jjj=antspymm.outlierness_by_modality( jjj, verbose=False)
    alldf = pd.concat( [alldf, jjj ], axis=0 )
    jjj.to_csv( "mm_outlierness_"+m+".csv")
    print(m+" done")
# write the joined data out
alldf.to_csv( "mm_outlierness.csv", index=False )
# find the best mm collection
matched_mm_data=antspymm.match_modalities( alldf, verbose=True )
matched_mm_data.to_csv( "matched_mm_data.csv", index=False )
matched_mm_data['negative_outlier_factor'] = 1.0 - matched_mm_data['ol_loop'].astype("float")
matched_mm_data2 = antspymm.highest_quality_repeat( matched_mm_data, 'subjectID', 'date', qualityvar='negative_outlier_factor')
matched_mm_data2.to_csv( "matched_mm_data2.csv", index=False )
```

## an example on open neuro (BIDS) data

from : [ANT PD](https://openneuro.org/datasets/ds001907/versions/3.0.2)

```
imagesBIDS/
└── ANTPD
    └── sub-RC4125
        └── ses-1
            ├── anat
            │   ├── sub-RC4125_ses-1_T1w.json
            │   └── sub-RC4125_ses-1_T1w.nii.gz
            ├── dwi
            │   ├── sub-RC4125_ses-1_dwi.bval
            │   ├── sub-RC4125_ses-1_dwi.bvec
            │   ├── sub-RC4125_ses-1_dwi.json
            │   └── sub-RC4125_ses-1_dwi.nii.gz
            └── func
                ├── sub-RC4125_ses-1_task-ANT_run-1_bold.json
                ├── sub-RC4125_ses-1_task-ANT_run-1_bold.nii.gz
                └── sub-RC4125_ses-1_task-ANT_run-1_events.tsv
```

```python
import antspymm
import pandas as pd
import glob as glob
fns = glob.glob("imagesBIDS/ANTPD/sub-RC4125/ses-*/*/*gz")
fns.sort()
randid='000' # BIDS does not have unique image ids - so we assign one
studycsv = antspymm.generate_mm_dataframe(
    'ANTPD',
    'sub-RC4125',
    'ses-1',
    randid,
    'T1w',
    '/Users/stnava/data/openneuro/imagesBIDS/',
    '/Users/stnava/data/openneuro/processed/',
    t1_filename=fns[0],
    dti_filenames=[fns[1]],
    rsf_filenames=[fns[2]])
studycsv2 = studycsv.dropna(axis=1)
mmrun = antspymm.mm_csv( studycsv2, mysep='_' )
```

## NRG example

NRG format details [here](https://htmlpreview.github.io/?https://github.com/stnava/biomedicalDataOrganization/blob/master/src/nrg_data_organization_summary.html)

```
imagesNRG/
└── ANTPD
    └── sub-RC4125
        └── ses-1
            ├── DTI
            │   └── 000
            │       ├── ANTPD_sub-RC4125_ses-1_DTI_000.bval
            │       ├── ANTPD_sub-RC4125_ses-1_DTI_000.bvec
            │       ├── ANTPD_sub-RC4125_ses-1_DTI_000.json
            │       └── ANTPD_sub-RC4125_ses-1_DTI_000.nii.gz
            ├── T1w
            │   └── 000
            │       └── ANTPD_sub-RC4125_ses-1_T1w_000.nii.gz
            └── rsfMRI
                └── 000
                    └── ANTPD_sub-RC4125_ses-1_rsfMRI_000.nii.gz
```



```python
import antspymm
import pandas as pd
import glob as glob
t1fn=glob.glob("imagesNRG/ANTPD/sub-RC4125/ses-*/*/*/*T1w*gz")[0]
# flair also takes a single image
dtfn=glob.glob("imagesNRG/ANTPD/sub-RC4125/ses-*/*/*/*DTI*gz")
rsfn=glob.glob("imagesNRG/ANTPD/sub-RC4125/ses-*/*/*/*rsfMRI*gz")
studycsv = antspymm.generate_mm_dataframe(
    'ANTPD',
    'sub-RC4125',
    'ses-1',
    '000',
    'T1w',
    '/Users/stnava/data/openneuro/imagesNRG/',
    '/Users/stnava/data/openneuro/processed/',
    t1fn,
    rsf_filenames=rsfn,
    dti_filenames=dtfn
)
studycsv2 = studycsv.dropna(axis=1)
mmrun = antspymm.mm_csv( studycsv2, mysep='_' )
```

## useful tools for converting dicom to nifti

* [dcm2niix](https://github.com/rordenlab/dcm2niix)

* [dicom2nifti](https://dicom2nifti.readthedocs.io/en/latest/)

```python
import dicom2nifti

dicom2nifti.convert_directory(dicom_directory, output_folder, compression=True, reorient=True)
```

* [simpleitk](https://pypi.org/project/SimpleITK/)

```python
import SimpleITK as sitk
import sys
import os
import glob as glob
import ants
dd='dicom'
oo='dicom2nifti'
folders=glob.glob('dicom/*')
k=0
for f in folders:
    print(f)    
    reader = sitk.ImageSeriesReader()
    ff=glob.glob(f+"/*")
    dicom_names = reader.GetGDCMSeriesFileNames(ff[0])
    if len(ff) > 0:
        fnout='dicom2nifti/image_'+str(k).zfill(4)+'.nii.gz'
        if not exists(fnout):
            failed=False
            reader.SetFileNames(dicom_names)
            try:
                image = reader.Execute()
            except:
                failed=True
                pass
            if not failed:
                size = image.GetSpacing()
                print( image.GetMetaDataKeys( ) )
                print( size )
                sitk.WriteImage(image, fnout )
                img=ants.image_read( fnout )
                img=ants.iMath(img,'TruncateIntensity',0.02,0.98)
                ants.plot( img, nslices=21,ncol=7,axis=2, crop=True )
        else:
            print(f+ ": "+'empty')
    k=k+1
```

## build docs

```
pdoc -o ./docs antspymm --html
```

## to publish a release

```
rm -r -f build/ antspymm.egg-info/ dist/
python3 setup.py sdist bdist_wheel
python3 -m twine upload -u username -p password  dist/*
```


%prep
%autosetup -n antspymm-0.9.9

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-antspymm -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.9-1
- Package Spec generated