1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
%global _empty_manifest_terminate_build 0
Name: python-apischema
Version: 0.18.0
Release: 1
Summary: JSON (de)serialization, GraphQL and JSON schema generation using Python typing.
License: MIT
URL: https://github.com/wyfo/apischema
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f8/83/3eb3847e6b43978a5a44e5a614d937c397e369a9332a6d3e7eb566022175/apischema-0.18.0.tar.gz
Requires: python3-graphql-core
Requires: python3-attrs
Requires: python3-docstring-parser
Requires: python3-bson
Requires: python3-orjson
Requires: python3-pydantic
Requires: python3-pytest
Requires: python3-sqlalchemy
Requires: python3-graphql-core
%description
# apischema
JSON (de)serialization, GraphQL and JSON schema generation using Python typing.
*apischema* makes your life easier when dealing with API data.
## Documentation
[https://wyfo.github.io/apischema/](https://wyfo.github.io/apischema/)
## Install
```shell
pip install apischema
```
It requires only Python 3.7+. *PyPy3* is also fully supported.
## Why another library?
(If you wonder how this differs from the *pydantic* library, see the [dedicated section of the documentation](https://wyfo.github.io/apischema/0.18/difference_with_pydantic) — there are many differences.)
This library fulfills the following goals:
- stay as close as possible to the standard library (dataclasses, typing, etc.) — as a consequence we do not need plugins for editors/linters/etc.;
- avoid object-oriented limitations — do not require a base class — thus handle easily every type (`Foo`, `list[Bar]`, `NewType(Id, int)`, etc.) the same way.
- be adaptable, provide tools to support any types (ORM, etc.);
- avoid dynamic things like using raw strings for attributes name - play nicely with your IDE.
No known alternative achieves all of this, and apischema is also [(a lot) faster](https://wyfo.github.io/apischema/0.18/optimizations_and_benchmark#benchmark) than all of them.
On top of that, because APIs are not only JSON, *apischema* is also a complete GraphQL library
> Actually, *apischema* is even adaptable enough to enable support of competitor libraries in a few dozens of line of code ([pydantic support example](https://wyfo.github.io/apischema/0.18/examples/pydantic_support) using [conversions feature](https://wyfo.github.io/apischema/0.18/conversions))
## Example
```python
from collections.abc import Collection
from dataclasses import dataclass, field
from uuid import UUID, uuid4
import pytest
from graphql import print_schema
from apischema import ValidationError, deserialize, serialize
from apischema.graphql import graphql_schema
from apischema.json_schema import deserialization_schema
# Define a schema with standard dataclasses
@dataclass
class Resource:
id: UUID
name: str
tags: set[str] = field(default_factory=set)
# Get some data
uuid = uuid4()
data = {"id": str(uuid), "name": "wyfo", "tags": ["some_tag"]}
# Deserialize data
resource = deserialize(Resource, data)
assert resource == Resource(uuid, "wyfo", {"some_tag"})
# Serialize objects
assert serialize(Resource, resource) == data
# Validate during deserialization
with pytest.raises(ValidationError) as err: # pytest checks exception is raised
deserialize(Resource, {"id": "42", "name": "wyfo"})
assert err.value.errors == [
{"loc": ["id"], "err": "badly formed hexadecimal UUID string"}
]
# Generate JSON Schema
assert deserialization_schema(Resource) == {
"$schema": "http://json-schema.org/draft/2020-12/schema#",
"type": "object",
"properties": {
"id": {"type": "string", "format": "uuid"},
"name": {"type": "string"},
"tags": {
"type": "array",
"items": {"type": "string"},
"uniqueItems": True,
"default": [],
},
},
"required": ["id", "name"],
"additionalProperties": False,
}
# Define GraphQL operations
def resources(tags: Collection[str] | None = None) -> Collection[Resource] | None:
...
# Generate GraphQL schema
schema = graphql_schema(query=[resources], id_types={UUID})
schema_str = """\
type Query {
resources(tags: [String!]): [Resource!]
}
type Resource {
id: ID!
name: String!
tags: [String!]!
}"""
assert print_schema(schema) == schema_str
```
*apischema* works out of the box with your data model.
> This example and further ones are using *pytest* API because they are in fact run as tests in the library CI
### Run the documentation examples
All documentation examples are written using the last Python minor version — currently 3.10 — in order to provide up-to-date documentation. Because Python 3.10 specificities (like [PEP 585](https://www.python.org/dev/peps/pep-0604/)) are used, this version is "mandatory" to execute the examples as-is.
In addition to *pytest*, some examples use third-party libraries like *SQLAlchemy* or *attrs*. All of this dependencies can be downloaded using the `examples` extra with
```shell
pip install apischema[examples]
```
Once dependencies are installed, you can simply copy-paste examples and execute them, using the proper Python version.
%package -n python3-apischema
Summary: JSON (de)serialization, GraphQL and JSON schema generation using Python typing.
Provides: python-apischema
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-apischema
# apischema
JSON (de)serialization, GraphQL and JSON schema generation using Python typing.
*apischema* makes your life easier when dealing with API data.
## Documentation
[https://wyfo.github.io/apischema/](https://wyfo.github.io/apischema/)
## Install
```shell
pip install apischema
```
It requires only Python 3.7+. *PyPy3* is also fully supported.
## Why another library?
(If you wonder how this differs from the *pydantic* library, see the [dedicated section of the documentation](https://wyfo.github.io/apischema/0.18/difference_with_pydantic) — there are many differences.)
This library fulfills the following goals:
- stay as close as possible to the standard library (dataclasses, typing, etc.) — as a consequence we do not need plugins for editors/linters/etc.;
- avoid object-oriented limitations — do not require a base class — thus handle easily every type (`Foo`, `list[Bar]`, `NewType(Id, int)`, etc.) the same way.
- be adaptable, provide tools to support any types (ORM, etc.);
- avoid dynamic things like using raw strings for attributes name - play nicely with your IDE.
No known alternative achieves all of this, and apischema is also [(a lot) faster](https://wyfo.github.io/apischema/0.18/optimizations_and_benchmark#benchmark) than all of them.
On top of that, because APIs are not only JSON, *apischema* is also a complete GraphQL library
> Actually, *apischema* is even adaptable enough to enable support of competitor libraries in a few dozens of line of code ([pydantic support example](https://wyfo.github.io/apischema/0.18/examples/pydantic_support) using [conversions feature](https://wyfo.github.io/apischema/0.18/conversions))
## Example
```python
from collections.abc import Collection
from dataclasses import dataclass, field
from uuid import UUID, uuid4
import pytest
from graphql import print_schema
from apischema import ValidationError, deserialize, serialize
from apischema.graphql import graphql_schema
from apischema.json_schema import deserialization_schema
# Define a schema with standard dataclasses
@dataclass
class Resource:
id: UUID
name: str
tags: set[str] = field(default_factory=set)
# Get some data
uuid = uuid4()
data = {"id": str(uuid), "name": "wyfo", "tags": ["some_tag"]}
# Deserialize data
resource = deserialize(Resource, data)
assert resource == Resource(uuid, "wyfo", {"some_tag"})
# Serialize objects
assert serialize(Resource, resource) == data
# Validate during deserialization
with pytest.raises(ValidationError) as err: # pytest checks exception is raised
deserialize(Resource, {"id": "42", "name": "wyfo"})
assert err.value.errors == [
{"loc": ["id"], "err": "badly formed hexadecimal UUID string"}
]
# Generate JSON Schema
assert deserialization_schema(Resource) == {
"$schema": "http://json-schema.org/draft/2020-12/schema#",
"type": "object",
"properties": {
"id": {"type": "string", "format": "uuid"},
"name": {"type": "string"},
"tags": {
"type": "array",
"items": {"type": "string"},
"uniqueItems": True,
"default": [],
},
},
"required": ["id", "name"],
"additionalProperties": False,
}
# Define GraphQL operations
def resources(tags: Collection[str] | None = None) -> Collection[Resource] | None:
...
# Generate GraphQL schema
schema = graphql_schema(query=[resources], id_types={UUID})
schema_str = """\
type Query {
resources(tags: [String!]): [Resource!]
}
type Resource {
id: ID!
name: String!
tags: [String!]!
}"""
assert print_schema(schema) == schema_str
```
*apischema* works out of the box with your data model.
> This example and further ones are using *pytest* API because they are in fact run as tests in the library CI
### Run the documentation examples
All documentation examples are written using the last Python minor version — currently 3.10 — in order to provide up-to-date documentation. Because Python 3.10 specificities (like [PEP 585](https://www.python.org/dev/peps/pep-0604/)) are used, this version is "mandatory" to execute the examples as-is.
In addition to *pytest*, some examples use third-party libraries like *SQLAlchemy* or *attrs*. All of this dependencies can be downloaded using the `examples` extra with
```shell
pip install apischema[examples]
```
Once dependencies are installed, you can simply copy-paste examples and execute them, using the proper Python version.
%package help
Summary: Development documents and examples for apischema
Provides: python3-apischema-doc
%description help
# apischema
JSON (de)serialization, GraphQL and JSON schema generation using Python typing.
*apischema* makes your life easier when dealing with API data.
## Documentation
[https://wyfo.github.io/apischema/](https://wyfo.github.io/apischema/)
## Install
```shell
pip install apischema
```
It requires only Python 3.7+. *PyPy3* is also fully supported.
## Why another library?
(If you wonder how this differs from the *pydantic* library, see the [dedicated section of the documentation](https://wyfo.github.io/apischema/0.18/difference_with_pydantic) — there are many differences.)
This library fulfills the following goals:
- stay as close as possible to the standard library (dataclasses, typing, etc.) — as a consequence we do not need plugins for editors/linters/etc.;
- avoid object-oriented limitations — do not require a base class — thus handle easily every type (`Foo`, `list[Bar]`, `NewType(Id, int)`, etc.) the same way.
- be adaptable, provide tools to support any types (ORM, etc.);
- avoid dynamic things like using raw strings for attributes name - play nicely with your IDE.
No known alternative achieves all of this, and apischema is also [(a lot) faster](https://wyfo.github.io/apischema/0.18/optimizations_and_benchmark#benchmark) than all of them.
On top of that, because APIs are not only JSON, *apischema* is also a complete GraphQL library
> Actually, *apischema* is even adaptable enough to enable support of competitor libraries in a few dozens of line of code ([pydantic support example](https://wyfo.github.io/apischema/0.18/examples/pydantic_support) using [conversions feature](https://wyfo.github.io/apischema/0.18/conversions))
## Example
```python
from collections.abc import Collection
from dataclasses import dataclass, field
from uuid import UUID, uuid4
import pytest
from graphql import print_schema
from apischema import ValidationError, deserialize, serialize
from apischema.graphql import graphql_schema
from apischema.json_schema import deserialization_schema
# Define a schema with standard dataclasses
@dataclass
class Resource:
id: UUID
name: str
tags: set[str] = field(default_factory=set)
# Get some data
uuid = uuid4()
data = {"id": str(uuid), "name": "wyfo", "tags": ["some_tag"]}
# Deserialize data
resource = deserialize(Resource, data)
assert resource == Resource(uuid, "wyfo", {"some_tag"})
# Serialize objects
assert serialize(Resource, resource) == data
# Validate during deserialization
with pytest.raises(ValidationError) as err: # pytest checks exception is raised
deserialize(Resource, {"id": "42", "name": "wyfo"})
assert err.value.errors == [
{"loc": ["id"], "err": "badly formed hexadecimal UUID string"}
]
# Generate JSON Schema
assert deserialization_schema(Resource) == {
"$schema": "http://json-schema.org/draft/2020-12/schema#",
"type": "object",
"properties": {
"id": {"type": "string", "format": "uuid"},
"name": {"type": "string"},
"tags": {
"type": "array",
"items": {"type": "string"},
"uniqueItems": True,
"default": [],
},
},
"required": ["id", "name"],
"additionalProperties": False,
}
# Define GraphQL operations
def resources(tags: Collection[str] | None = None) -> Collection[Resource] | None:
...
# Generate GraphQL schema
schema = graphql_schema(query=[resources], id_types={UUID})
schema_str = """\
type Query {
resources(tags: [String!]): [Resource!]
}
type Resource {
id: ID!
name: String!
tags: [String!]!
}"""
assert print_schema(schema) == schema_str
```
*apischema* works out of the box with your data model.
> This example and further ones are using *pytest* API because they are in fact run as tests in the library CI
### Run the documentation examples
All documentation examples are written using the last Python minor version — currently 3.10 — in order to provide up-to-date documentation. Because Python 3.10 specificities (like [PEP 585](https://www.python.org/dev/peps/pep-0604/)) are used, this version is "mandatory" to execute the examples as-is.
In addition to *pytest*, some examples use third-party libraries like *SQLAlchemy* or *attrs*. All of this dependencies can be downloaded using the `examples` extra with
```shell
pip install apischema[examples]
```
Once dependencies are installed, you can simply copy-paste examples and execute them, using the proper Python version.
%prep
%autosetup -n apischema-0.18.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-apischema -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.18.0-1
- Package Spec generated
|