summaryrefslogtreecommitdiff
path: root/python-arch.spec
blob: ccc1e96968c98a3612c6afddaec140091f95db3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
%global _empty_manifest_terminate_build 0
Name:		python-arch
Version:	5.4.0
Release:	1
Summary:	ARCH for Python
License:	NCSA
URL:		https://github.com/bashtage/arch
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/f0/f6/4306a2c1171e562806e927632398bc3a0eeb6063cbb99e781820eb62aecc/arch-5.4.0.tar.gz

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-pandas
Requires:	python3-statsmodels
Requires:	python3-property-cached

%description
# arch

[![arch](https://bashtage.github.io/arch/doc/_static/images/color-logo-256.png)](https://github.com/bashtage/arch)

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for
financial econometrics, written in Python (with Cython and/or Numba used
to improve performance)

| Metric                     |                                                                                                                                                                                                                                          |
| :------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Latest Release**         | [![PyPI version](https://badge.fury.io/py/arch.svg)](https://badge.fury.io/py/arch)                                                                                                                                                      |
|                            | [![conda-forge version](https://anaconda.org/conda-forge/arch-py/badges/version.svg)](https://anaconda.org/conda-forge/arch-py)                                                                                                          |
| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard0207/kevinksheppard/_apis/build/status/bashtage.arch?branchName=main)](https://dev.azure.com/kevinksheppard0207/kevinksheppard/_build/latest?definitionId=1&branchName=main)        |
|                            | [![Appveyor Build Status](https://ci.appveyor.com/api/projects/status/nmt02u7jwcgx7i2x?svg=true)](https://ci.appveyor.com/project/bashtage/arch/branch/main)                                                                             |
| **Coverage**               | [![codecov](https://codecov.io/gh/bashtage/arch/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/arch)                                                                                                                       |
| **Code Quality**           | [![Code Quality: Python](https://img.shields.io/lgtm/grade/python/g/bashtage/arch.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/arch/context:python)                                                                 |
|                            | [![Total Alerts](https://img.shields.io/lgtm/alerts/g/bashtage/arch.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/arch/alerts)                                                                                       |
|                            | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/93f6fd90209842bf97fd20fda8db70ef)](https://www.codacy.com/manual/bashtage/arch?utm_source=github.com&utm_medium=referral&utm_content=bashtage/arch&utm_campaign=Badge_Grade) |
|                            | [![codebeat badge](https://codebeat.co/badges/18a78c15-d74b-4820-b56d-72f7e4087532)](https://codebeat.co/projects/github-com-bashtage-arch-main)                                                                                         |
| **Citation**               | [![DOI](https://zenodo.org/badge/doi/10.5281/zenodo.593254.svg)](https://doi.org/10.5281/zenodo.593254)                                                                                                                                  |
| **Documentation**          | [![Documentation Status](https://readthedocs.org/projects/arch/badge/?version=latest)](https://arch.readthedocs.org/en/latest/)                                                                                                          |

## Module Contents

- [Univariate ARCH Models](#volatility)
- [Unit Root Tests](#unit-root)
- [Cointegration Testing and Analysis](#cointegration)
- [Bootstrapping](#bootstrap)
- [Multiple Comparison Tests](#multiple-comparison)
- [Long-run Covariance Estimation](#long-run-covariance)

### Python 3

`arch` is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

## Documentation

Documentation from the main branch is hosted on
[my github pages](https://bashtage.github.io/arch/).

Released documentation is hosted on
[read the docs](https://arch.readthedocs.org/en/latest/).

## More about ARCH

More information about ARCH and related models is available in the notes and
research available at [Kevin Sheppard's site](https://www.kevinsheppard.com).

## Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

- Implement new volatility process, e.g., FIGARCH
- Improve docstrings where unclear or with typos
- Provide examples, preferably in the form of IPython notebooks

## Examples

<a id="volatility"></a>

### Volatility Modeling

- Mean models
  - Constant mean
  - Heterogeneous Autoregression (HAR)
  - Autoregression (AR)
  - Zero mean
  - Models with and without exogenous regressors
- Volatility models
  - ARCH
  - GARCH
  - TARCH
  - EGARCH
  - EWMA/RiskMetrics
- Distributions
  - Normal
  - Student's T
  - Generalized Error Distribution

See the [univariate volatility example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/univariate_volatility_modeling.ipynb) for a more complete overview.

```python
import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()
```

<a id="unit-root"></a>

### Unit Root Tests

- Augmented Dickey-Fuller
- Dickey-Fuller GLS
- Phillips-Perron
- KPSS
- Zivot-Andrews
- Variance Ratio tests

See the [unit root testing example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/unitroot_examples.ipynb)
for examples of testing series for unit roots.

<a id="unit-root"></a>

### Cointegration Testing and Analysis

- Tests
  - Engle-Granger Test
  - Phillips-Ouliaris Test
- Cointegration Vector Estimation
  - Canonical Cointegrating Regression
  - Dynamic OLS
  - Fully Modified OLS

See the [cointegration testing example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/unitroot_cointegration_examples.ipynb)
for examples of testing series for cointegration.

<a id="bootstrap"></a>

### Bootstrap

- Bootstraps
  - IID Bootstrap
  - Stationary Bootstrap
  - Circular Block Bootstrap
  - Moving Block Bootstrap
- Methods
  - Confidence interval construction
  - Covariance estimation
  - Apply method to estimate model across bootstraps
  - Generic Bootstrap iterator

See the [bootstrap example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/bootstrap_examples.ipynb)
for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

```python
# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')
```

<a id="multiple-comparison"></a>

### Multiple Comparison Procedures

- Test of Superior Predictive Ability (SPA), also known as the Reality
    Check or Bootstrap Data Snooper
- Stepwise (StepM)
- Model Confidence Set (MCS)

See the [multiple comparison example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/multiple-comparison_examples.ipynb)
for examples of the multiple comparison procedures.

<a id="long-run-covariance"></a>

### Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the
Bartlett kernel which is known as Newey-West in econometrics.
Automatic bandwidth selection is available for all of the
covariance estimators.

```python
from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run
```

## Requirements

These requirements reflect the testing environment. It is possible
that arch will work with older versions.

- Python (3.7+)
- NumPy (1.17+)
- SciPy (1.3+)
- Pandas (1.0+)
- statsmodels (0.11+)
- matplotlib (3+), optional
- property-cached (1.6.4+), optional

### Optional Requirements

- Numba (0.49+) will be used if available **and** when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable `ARCH_NO_BINARY=1` and install without the wheel.

```shell
export ARCH_NO_BINARY=1
python -m pip install arch
```

or if using Powershell on windows

```powershell
$env:ARCH_NO_BINARY=1
python -m pip install arch
```

- jupyter and notebook are required to run the notebooks

## Installing

Standard installation with a compiler requires Cython. If you do not
have a compiler installed, the `arch` should still install. You will
see a warning but this can be ignored. If you don't have a compiler,
`numba` is strongly recommended.

### pip

Releases are available PyPI and can be installed with `pip`.

```shell
pip install arch
```

You can alternatively install the latest version from GitHub

```bash
pip install git+https://github.com/bashtage/arch.git
```

Setting the environment variable `ARCH_NO_BINARY=1` can be used to
disable compilation of the extensions.

### Anaconda

`conda` users can install from conda-forge,

```bash
conda install arch-py -c conda-forge
```

**Note**: The conda-forge name is `arch-py`.

### Windows

Building extension using the community edition of Visual Studio is
simple when using Python 3.7 or later. Building is not necessary when numba
is installed since just-in-time compiled code (numba) runs as fast as
ahead-of-time compiled extensions.

### Developing

The development requirements are:

- Cython (0.29+, if not using ARCH_NO_BINARY=1)
- pytest (For tests)
- sphinx (to build docs)
- sphinx_material (to build docs)
- jupyter, notebook and nbsphinx (to build docs)

### Installation Notes

1. If Cython is not installed, the package will be installed
    as-if `ARCH_NO_BINARY=1` was set.
2. Setup does not verify these requirements. Please ensure these are
    installed.


%package -n python3-arch
Summary:	ARCH for Python
Provides:	python-arch
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-arch
# arch

[![arch](https://bashtage.github.io/arch/doc/_static/images/color-logo-256.png)](https://github.com/bashtage/arch)

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for
financial econometrics, written in Python (with Cython and/or Numba used
to improve performance)

| Metric                     |                                                                                                                                                                                                                                          |
| :------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Latest Release**         | [![PyPI version](https://badge.fury.io/py/arch.svg)](https://badge.fury.io/py/arch)                                                                                                                                                      |
|                            | [![conda-forge version](https://anaconda.org/conda-forge/arch-py/badges/version.svg)](https://anaconda.org/conda-forge/arch-py)                                                                                                          |
| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard0207/kevinksheppard/_apis/build/status/bashtage.arch?branchName=main)](https://dev.azure.com/kevinksheppard0207/kevinksheppard/_build/latest?definitionId=1&branchName=main)        |
|                            | [![Appveyor Build Status](https://ci.appveyor.com/api/projects/status/nmt02u7jwcgx7i2x?svg=true)](https://ci.appveyor.com/project/bashtage/arch/branch/main)                                                                             |
| **Coverage**               | [![codecov](https://codecov.io/gh/bashtage/arch/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/arch)                                                                                                                       |
| **Code Quality**           | [![Code Quality: Python](https://img.shields.io/lgtm/grade/python/g/bashtage/arch.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/arch/context:python)                                                                 |
|                            | [![Total Alerts](https://img.shields.io/lgtm/alerts/g/bashtage/arch.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/arch/alerts)                                                                                       |
|                            | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/93f6fd90209842bf97fd20fda8db70ef)](https://www.codacy.com/manual/bashtage/arch?utm_source=github.com&utm_medium=referral&utm_content=bashtage/arch&utm_campaign=Badge_Grade) |
|                            | [![codebeat badge](https://codebeat.co/badges/18a78c15-d74b-4820-b56d-72f7e4087532)](https://codebeat.co/projects/github-com-bashtage-arch-main)                                                                                         |
| **Citation**               | [![DOI](https://zenodo.org/badge/doi/10.5281/zenodo.593254.svg)](https://doi.org/10.5281/zenodo.593254)                                                                                                                                  |
| **Documentation**          | [![Documentation Status](https://readthedocs.org/projects/arch/badge/?version=latest)](https://arch.readthedocs.org/en/latest/)                                                                                                          |

## Module Contents

- [Univariate ARCH Models](#volatility)
- [Unit Root Tests](#unit-root)
- [Cointegration Testing and Analysis](#cointegration)
- [Bootstrapping](#bootstrap)
- [Multiple Comparison Tests](#multiple-comparison)
- [Long-run Covariance Estimation](#long-run-covariance)

### Python 3

`arch` is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

## Documentation

Documentation from the main branch is hosted on
[my github pages](https://bashtage.github.io/arch/).

Released documentation is hosted on
[read the docs](https://arch.readthedocs.org/en/latest/).

## More about ARCH

More information about ARCH and related models is available in the notes and
research available at [Kevin Sheppard's site](https://www.kevinsheppard.com).

## Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

- Implement new volatility process, e.g., FIGARCH
- Improve docstrings where unclear or with typos
- Provide examples, preferably in the form of IPython notebooks

## Examples

<a id="volatility"></a>

### Volatility Modeling

- Mean models
  - Constant mean
  - Heterogeneous Autoregression (HAR)
  - Autoregression (AR)
  - Zero mean
  - Models with and without exogenous regressors
- Volatility models
  - ARCH
  - GARCH
  - TARCH
  - EGARCH
  - EWMA/RiskMetrics
- Distributions
  - Normal
  - Student's T
  - Generalized Error Distribution

See the [univariate volatility example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/univariate_volatility_modeling.ipynb) for a more complete overview.

```python
import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()
```

<a id="unit-root"></a>

### Unit Root Tests

- Augmented Dickey-Fuller
- Dickey-Fuller GLS
- Phillips-Perron
- KPSS
- Zivot-Andrews
- Variance Ratio tests

See the [unit root testing example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/unitroot_examples.ipynb)
for examples of testing series for unit roots.

<a id="unit-root"></a>

### Cointegration Testing and Analysis

- Tests
  - Engle-Granger Test
  - Phillips-Ouliaris Test
- Cointegration Vector Estimation
  - Canonical Cointegrating Regression
  - Dynamic OLS
  - Fully Modified OLS

See the [cointegration testing example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/unitroot_cointegration_examples.ipynb)
for examples of testing series for cointegration.

<a id="bootstrap"></a>

### Bootstrap

- Bootstraps
  - IID Bootstrap
  - Stationary Bootstrap
  - Circular Block Bootstrap
  - Moving Block Bootstrap
- Methods
  - Confidence interval construction
  - Covariance estimation
  - Apply method to estimate model across bootstraps
  - Generic Bootstrap iterator

See the [bootstrap example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/bootstrap_examples.ipynb)
for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

```python
# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')
```

<a id="multiple-comparison"></a>

### Multiple Comparison Procedures

- Test of Superior Predictive Ability (SPA), also known as the Reality
    Check or Bootstrap Data Snooper
- Stepwise (StepM)
- Model Confidence Set (MCS)

See the [multiple comparison example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/multiple-comparison_examples.ipynb)
for examples of the multiple comparison procedures.

<a id="long-run-covariance"></a>

### Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the
Bartlett kernel which is known as Newey-West in econometrics.
Automatic bandwidth selection is available for all of the
covariance estimators.

```python
from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run
```

## Requirements

These requirements reflect the testing environment. It is possible
that arch will work with older versions.

- Python (3.7+)
- NumPy (1.17+)
- SciPy (1.3+)
- Pandas (1.0+)
- statsmodels (0.11+)
- matplotlib (3+), optional
- property-cached (1.6.4+), optional

### Optional Requirements

- Numba (0.49+) will be used if available **and** when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable `ARCH_NO_BINARY=1` and install without the wheel.

```shell
export ARCH_NO_BINARY=1
python -m pip install arch
```

or if using Powershell on windows

```powershell
$env:ARCH_NO_BINARY=1
python -m pip install arch
```

- jupyter and notebook are required to run the notebooks

## Installing

Standard installation with a compiler requires Cython. If you do not
have a compiler installed, the `arch` should still install. You will
see a warning but this can be ignored. If you don't have a compiler,
`numba` is strongly recommended.

### pip

Releases are available PyPI and can be installed with `pip`.

```shell
pip install arch
```

You can alternatively install the latest version from GitHub

```bash
pip install git+https://github.com/bashtage/arch.git
```

Setting the environment variable `ARCH_NO_BINARY=1` can be used to
disable compilation of the extensions.

### Anaconda

`conda` users can install from conda-forge,

```bash
conda install arch-py -c conda-forge
```

**Note**: The conda-forge name is `arch-py`.

### Windows

Building extension using the community edition of Visual Studio is
simple when using Python 3.7 or later. Building is not necessary when numba
is installed since just-in-time compiled code (numba) runs as fast as
ahead-of-time compiled extensions.

### Developing

The development requirements are:

- Cython (0.29+, if not using ARCH_NO_BINARY=1)
- pytest (For tests)
- sphinx (to build docs)
- sphinx_material (to build docs)
- jupyter, notebook and nbsphinx (to build docs)

### Installation Notes

1. If Cython is not installed, the package will be installed
    as-if `ARCH_NO_BINARY=1` was set.
2. Setup does not verify these requirements. Please ensure these are
    installed.


%package help
Summary:	Development documents and examples for arch
Provides:	python3-arch-doc
%description help
# arch

[![arch](https://bashtage.github.io/arch/doc/_static/images/color-logo-256.png)](https://github.com/bashtage/arch)

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for
financial econometrics, written in Python (with Cython and/or Numba used
to improve performance)

| Metric                     |                                                                                                                                                                                                                                          |
| :------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Latest Release**         | [![PyPI version](https://badge.fury.io/py/arch.svg)](https://badge.fury.io/py/arch)                                                                                                                                                      |
|                            | [![conda-forge version](https://anaconda.org/conda-forge/arch-py/badges/version.svg)](https://anaconda.org/conda-forge/arch-py)                                                                                                          |
| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard0207/kevinksheppard/_apis/build/status/bashtage.arch?branchName=main)](https://dev.azure.com/kevinksheppard0207/kevinksheppard/_build/latest?definitionId=1&branchName=main)        |
|                            | [![Appveyor Build Status](https://ci.appveyor.com/api/projects/status/nmt02u7jwcgx7i2x?svg=true)](https://ci.appveyor.com/project/bashtage/arch/branch/main)                                                                             |
| **Coverage**               | [![codecov](https://codecov.io/gh/bashtage/arch/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/arch)                                                                                                                       |
| **Code Quality**           | [![Code Quality: Python](https://img.shields.io/lgtm/grade/python/g/bashtage/arch.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/arch/context:python)                                                                 |
|                            | [![Total Alerts](https://img.shields.io/lgtm/alerts/g/bashtage/arch.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/arch/alerts)                                                                                       |
|                            | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/93f6fd90209842bf97fd20fda8db70ef)](https://www.codacy.com/manual/bashtage/arch?utm_source=github.com&utm_medium=referral&utm_content=bashtage/arch&utm_campaign=Badge_Grade) |
|                            | [![codebeat badge](https://codebeat.co/badges/18a78c15-d74b-4820-b56d-72f7e4087532)](https://codebeat.co/projects/github-com-bashtage-arch-main)                                                                                         |
| **Citation**               | [![DOI](https://zenodo.org/badge/doi/10.5281/zenodo.593254.svg)](https://doi.org/10.5281/zenodo.593254)                                                                                                                                  |
| **Documentation**          | [![Documentation Status](https://readthedocs.org/projects/arch/badge/?version=latest)](https://arch.readthedocs.org/en/latest/)                                                                                                          |

## Module Contents

- [Univariate ARCH Models](#volatility)
- [Unit Root Tests](#unit-root)
- [Cointegration Testing and Analysis](#cointegration)
- [Bootstrapping](#bootstrap)
- [Multiple Comparison Tests](#multiple-comparison)
- [Long-run Covariance Estimation](#long-run-covariance)

### Python 3

`arch` is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

## Documentation

Documentation from the main branch is hosted on
[my github pages](https://bashtage.github.io/arch/).

Released documentation is hosted on
[read the docs](https://arch.readthedocs.org/en/latest/).

## More about ARCH

More information about ARCH and related models is available in the notes and
research available at [Kevin Sheppard's site](https://www.kevinsheppard.com).

## Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

- Implement new volatility process, e.g., FIGARCH
- Improve docstrings where unclear or with typos
- Provide examples, preferably in the form of IPython notebooks

## Examples

<a id="volatility"></a>

### Volatility Modeling

- Mean models
  - Constant mean
  - Heterogeneous Autoregression (HAR)
  - Autoregression (AR)
  - Zero mean
  - Models with and without exogenous regressors
- Volatility models
  - ARCH
  - GARCH
  - TARCH
  - EGARCH
  - EWMA/RiskMetrics
- Distributions
  - Normal
  - Student's T
  - Generalized Error Distribution

See the [univariate volatility example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/univariate_volatility_modeling.ipynb) for a more complete overview.

```python
import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()
```

<a id="unit-root"></a>

### Unit Root Tests

- Augmented Dickey-Fuller
- Dickey-Fuller GLS
- Phillips-Perron
- KPSS
- Zivot-Andrews
- Variance Ratio tests

See the [unit root testing example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/unitroot_examples.ipynb)
for examples of testing series for unit roots.

<a id="unit-root"></a>

### Cointegration Testing and Analysis

- Tests
  - Engle-Granger Test
  - Phillips-Ouliaris Test
- Cointegration Vector Estimation
  - Canonical Cointegrating Regression
  - Dynamic OLS
  - Fully Modified OLS

See the [cointegration testing example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/unitroot_cointegration_examples.ipynb)
for examples of testing series for cointegration.

<a id="bootstrap"></a>

### Bootstrap

- Bootstraps
  - IID Bootstrap
  - Stationary Bootstrap
  - Circular Block Bootstrap
  - Moving Block Bootstrap
- Methods
  - Confidence interval construction
  - Covariance estimation
  - Apply method to estimate model across bootstraps
  - Generic Bootstrap iterator

See the [bootstrap example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/bootstrap_examples.ipynb)
for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

```python
# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')
```

<a id="multiple-comparison"></a>

### Multiple Comparison Procedures

- Test of Superior Predictive Ability (SPA), also known as the Reality
    Check or Bootstrap Data Snooper
- Stepwise (StepM)
- Model Confidence Set (MCS)

See the [multiple comparison example notebook](https://nbviewer.ipython.org/github/bashtage/arch/blob/main/examples/multiple-comparison_examples.ipynb)
for examples of the multiple comparison procedures.

<a id="long-run-covariance"></a>

### Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the
Bartlett kernel which is known as Newey-West in econometrics.
Automatic bandwidth selection is available for all of the
covariance estimators.

```python
from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run
```

## Requirements

These requirements reflect the testing environment. It is possible
that arch will work with older versions.

- Python (3.7+)
- NumPy (1.17+)
- SciPy (1.3+)
- Pandas (1.0+)
- statsmodels (0.11+)
- matplotlib (3+), optional
- property-cached (1.6.4+), optional

### Optional Requirements

- Numba (0.49+) will be used if available **and** when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable `ARCH_NO_BINARY=1` and install without the wheel.

```shell
export ARCH_NO_BINARY=1
python -m pip install arch
```

or if using Powershell on windows

```powershell
$env:ARCH_NO_BINARY=1
python -m pip install arch
```

- jupyter and notebook are required to run the notebooks

## Installing

Standard installation with a compiler requires Cython. If you do not
have a compiler installed, the `arch` should still install. You will
see a warning but this can be ignored. If you don't have a compiler,
`numba` is strongly recommended.

### pip

Releases are available PyPI and can be installed with `pip`.

```shell
pip install arch
```

You can alternatively install the latest version from GitHub

```bash
pip install git+https://github.com/bashtage/arch.git
```

Setting the environment variable `ARCH_NO_BINARY=1` can be used to
disable compilation of the extensions.

### Anaconda

`conda` users can install from conda-forge,

```bash
conda install arch-py -c conda-forge
```

**Note**: The conda-forge name is `arch-py`.

### Windows

Building extension using the community edition of Visual Studio is
simple when using Python 3.7 or later. Building is not necessary when numba
is installed since just-in-time compiled code (numba) runs as fast as
ahead-of-time compiled extensions.

### Developing

The development requirements are:

- Cython (0.29+, if not using ARCH_NO_BINARY=1)
- pytest (For tests)
- sphinx (to build docs)
- sphinx_material (to build docs)
- jupyter, notebook and nbsphinx (to build docs)

### Installation Notes

1. If Cython is not installed, the package will be installed
    as-if `ARCH_NO_BINARY=1` was set.
2. Setup does not verify these requirements. Please ensure these are
    installed.


%prep
%autosetup -n arch-5.4.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-arch -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 5.4.0-1
- Package Spec generated