summaryrefslogtreecommitdiff
path: root/python-artist-engineering-geek.spec
blob: d2aca497baec9e856976d26d409d33fa28615684 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
%global _empty_manifest_terminate_build 0
Name:		python-Artist-Engineering-Geek
Version:	0.1.0
Release:	1
Summary:	A bunch of GANs and data downloaders to make a custom AI artist
License:	MIT License
URL:		https://github.com/Fatima-x-Nikhil/Artist
Source0:	https://mirrors.aliyun.com/pypi/web/packages/13/b6/1b3c8960a298e6ad5af273c789133898abac022b270bb3dc6653ad923bcf/Artist-Engineering_Geek-0.1.0.tar.gz
BuildArch:	noarch

Requires:	python3-torch
Requires:	python3-torchvision
Requires:	python3-matplotlib
Requires:	python3-Pillow
Requires:	python3-pytorch-lightning
Requires:	python3-numpy
Requires:	python3-tqdm
Requires:	python3-requests

%description
# Artist
## Motivation
- An easy to edit codebase for Progressive GAN originally published by this [research paper][Progressive GAN Research Paper] and other GANs
- Supplement my personal projects
- Resume builder
- For fun and to understand state-of-the-art AI

## Installation
#### CUDA Installation
Ensure you have a GPU if you want to train in any reasonable amount of time.
- [Install CUDA here][CUDA Install]
- [Install cuDNN here][cuDNN Install]
#### Project Installation
```sh
pip install Artist-Engineering-Geek
# Don't forget to install your specific pytorch and torchvision libraries for your gpu
# in my case, I have the NVIDIA RTX 3090 so this is my version
pip install --no-cache-dir --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu112/torch_nightly.html
```

## Running the program
To train the program, run the "Train.ipynb" notebook and alter your parameters at will on GitHub.
There should be sufficient in-code documentation for you to understand what the hell is going on

   [CUDA Install]: <https://developer.nvidia.com/cuda-downloads>
   [cuDNN Install]: <https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html>
   [Progressive GAN Research Paper]: <https://arxiv.org/abs/1710.10196>



%package -n python3-Artist-Engineering-Geek
Summary:	A bunch of GANs and data downloaders to make a custom AI artist
Provides:	python-Artist-Engineering-Geek
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-Artist-Engineering-Geek
# Artist
## Motivation
- An easy to edit codebase for Progressive GAN originally published by this [research paper][Progressive GAN Research Paper] and other GANs
- Supplement my personal projects
- Resume builder
- For fun and to understand state-of-the-art AI

## Installation
#### CUDA Installation
Ensure you have a GPU if you want to train in any reasonable amount of time.
- [Install CUDA here][CUDA Install]
- [Install cuDNN here][cuDNN Install]
#### Project Installation
```sh
pip install Artist-Engineering-Geek
# Don't forget to install your specific pytorch and torchvision libraries for your gpu
# in my case, I have the NVIDIA RTX 3090 so this is my version
pip install --no-cache-dir --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu112/torch_nightly.html
```

## Running the program
To train the program, run the "Train.ipynb" notebook and alter your parameters at will on GitHub.
There should be sufficient in-code documentation for you to understand what the hell is going on

   [CUDA Install]: <https://developer.nvidia.com/cuda-downloads>
   [cuDNN Install]: <https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html>
   [Progressive GAN Research Paper]: <https://arxiv.org/abs/1710.10196>



%package help
Summary:	Development documents and examples for Artist-Engineering-Geek
Provides:	python3-Artist-Engineering-Geek-doc
%description help
# Artist
## Motivation
- An easy to edit codebase for Progressive GAN originally published by this [research paper][Progressive GAN Research Paper] and other GANs
- Supplement my personal projects
- Resume builder
- For fun and to understand state-of-the-art AI

## Installation
#### CUDA Installation
Ensure you have a GPU if you want to train in any reasonable amount of time.
- [Install CUDA here][CUDA Install]
- [Install cuDNN here][cuDNN Install]
#### Project Installation
```sh
pip install Artist-Engineering-Geek
# Don't forget to install your specific pytorch and torchvision libraries for your gpu
# in my case, I have the NVIDIA RTX 3090 so this is my version
pip install --no-cache-dir --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu112/torch_nightly.html
```

## Running the program
To train the program, run the "Train.ipynb" notebook and alter your parameters at will on GitHub.
There should be sufficient in-code documentation for you to understand what the hell is going on

   [CUDA Install]: <https://developer.nvidia.com/cuda-downloads>
   [cuDNN Install]: <https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html>
   [Progressive GAN Research Paper]: <https://arxiv.org/abs/1710.10196>



%prep
%autosetup -n Artist-Engineering_Geek-0.1.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-Artist-Engineering-Geek -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.0-1
- Package Spec generated