1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
%global _empty_manifest_terminate_build 0
Name: python-ASLPAw
Version: 2.2.0
Release: 1
Summary: Adaptive overlapping community discovery algorithm package in python.
License: GNU Affero General Public License v3
URL: https://github.com/fsssosei/ASLPAw
Source0: https://mirrors.aliyun.com/pypi/web/packages/aa/0b/83d1289c05d7c299d556c527d9ab7455db1a016a84510063bc5b49329c38/ASLPAw-2.2.0.tar.gz
BuildArch: noarch
Requires: python3-networkx
Requires: python3-multivalued-dict
Requires: python3-shuffle-graph
Requires: python3-count-dict
Requires: python3-similarity-index-of-label-graph
Requires: python3-scikit-learn
%description
# ASLPAw



[](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/build-status/master)
[](https://scrutinizer-ci.com/code-intelligence)
[](https://lgtm.com/projects/g/fsssosei/ASLPAw/context:python)
[](https://www.codacy.com/manual/fsssosei/ASLPAw?utm_source=github.com&utm_medium=referral&utm_content=fsssosei/ASLPAw&utm_campaign=Badge_Grade)
[](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/?branch=master)



*Adaptive overlapping community discovery algorithm package in python.*
ASLPAw can be used for disjoint and overlapping community detection and works on weighted/unweighted and directed/undirected networks.
ASLPAw is adaptive with virtually no configuration parameters.
This is an easy-to-understand reference implementation that is not optimized for efficiency, but is robust. The underlying NetworkX package is inherently inefficient and unsuitable for use on large networks.
The next release will extend support for multiple productivity packages, such as SNAP, graph-tool, and igraph.
## Installation
Installation can be done through pip. You must have python version >= 3.8
pip install ASLPAw
## Usage
The statement to import the package:
from ASLPAw_package import ASLPAw
Example:
>>> from networkx.generators.community import relaxed_caveman_graph
>>> #Set seed to make the results repeatable.
>>> data_graph = relaxed_caveman_graph(3, 6, 0.22, seed = 65535)
>>> ASLPAw(data_graph, seed=65535).adj
AdjacencyView({0: {2: {'weight': 0.9}}, 2: {2: {'weight': 0.9333333333333333}}, 1: {6: {'weight': 0.6}}, 6: {6: {'weight': 1.0}}, 3: {2: {'weight': 0.6}}, 4: {2: {'weight': 0.8666666666666667}}, 5: {2: {'weight': 0.9333333333333333}}, 7: {6: {'weight': 1.0}}, 8: {6: {'weight': 0.9666666666666667}}, 9: {6: {'weight': 0.9333333333333333}}, 10: {6: {'weight': 0.8666666666666667}}, 11: {6: {'weight': 0.9666666666666667}}, 12: {12: {'weight': 1.0333333333333334}}, 13: {12: {'weight': 0.9666666666666667}}, 14: {12: {'weight': 1.0}}, 15: {12: {'weight': 1.0}}, 16: {12: {'weight': 1.0}}, 17: {12: {'weight': 1.0}}})
>>> data_graph = relaxed_caveman_graph(3, 6, 0.39, seed = 65535)
>>> ASLPAw(data_graph, seed=65535).adj
AdjacencyView({0: {1: {'weight': 0.9333333333333333}}, 1: {1: {'weight': 1.0}}, 2: {1: {'weight': 1.0}}, 3: {1: {'weight': 0.9666666666666667}}, 4: {1: {'weight': 1.0}}, 5: {1: {'weight': 0.9666666666666667}}, 6: {}, 7: {7: {'weight': 0.7666666666666667}}, 8: {}, 9: {13: {'weight': 0.4}, 6: {'weight': 0.26666666666666666}}, 13: {13: {'weight': 0.6333333333333333}}, 10: {1: {'weight': 0.5666666666666667}}, 11: {7: {'weight': 0.6333333333333333}}, 12: {12: {'weight': 0.4666666666666667}, 13: {'weight': 0.4}}, 14: {13: {'weight': 0.5666666666666667}}, 15: {13: {'weight': 0.5333333333333333}, 12: {'weight': 0.3333333333333333}}, 16: {13: {'weight': 0.43333333333333335}}, 17: {13: {'weight': 0.43333333333333335}, 12: {'weight': 0.4}}})
%package -n python3-ASLPAw
Summary: Adaptive overlapping community discovery algorithm package in python.
Provides: python-ASLPAw
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-ASLPAw
# ASLPAw



[](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/build-status/master)
[](https://scrutinizer-ci.com/code-intelligence)
[](https://lgtm.com/projects/g/fsssosei/ASLPAw/context:python)
[](https://www.codacy.com/manual/fsssosei/ASLPAw?utm_source=github.com&utm_medium=referral&utm_content=fsssosei/ASLPAw&utm_campaign=Badge_Grade)
[](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/?branch=master)



*Adaptive overlapping community discovery algorithm package in python.*
ASLPAw can be used for disjoint and overlapping community detection and works on weighted/unweighted and directed/undirected networks.
ASLPAw is adaptive with virtually no configuration parameters.
This is an easy-to-understand reference implementation that is not optimized for efficiency, but is robust. The underlying NetworkX package is inherently inefficient and unsuitable for use on large networks.
The next release will extend support for multiple productivity packages, such as SNAP, graph-tool, and igraph.
## Installation
Installation can be done through pip. You must have python version >= 3.8
pip install ASLPAw
## Usage
The statement to import the package:
from ASLPAw_package import ASLPAw
Example:
>>> from networkx.generators.community import relaxed_caveman_graph
>>> #Set seed to make the results repeatable.
>>> data_graph = relaxed_caveman_graph(3, 6, 0.22, seed = 65535)
>>> ASLPAw(data_graph, seed=65535).adj
AdjacencyView({0: {2: {'weight': 0.9}}, 2: {2: {'weight': 0.9333333333333333}}, 1: {6: {'weight': 0.6}}, 6: {6: {'weight': 1.0}}, 3: {2: {'weight': 0.6}}, 4: {2: {'weight': 0.8666666666666667}}, 5: {2: {'weight': 0.9333333333333333}}, 7: {6: {'weight': 1.0}}, 8: {6: {'weight': 0.9666666666666667}}, 9: {6: {'weight': 0.9333333333333333}}, 10: {6: {'weight': 0.8666666666666667}}, 11: {6: {'weight': 0.9666666666666667}}, 12: {12: {'weight': 1.0333333333333334}}, 13: {12: {'weight': 0.9666666666666667}}, 14: {12: {'weight': 1.0}}, 15: {12: {'weight': 1.0}}, 16: {12: {'weight': 1.0}}, 17: {12: {'weight': 1.0}}})
>>> data_graph = relaxed_caveman_graph(3, 6, 0.39, seed = 65535)
>>> ASLPAw(data_graph, seed=65535).adj
AdjacencyView({0: {1: {'weight': 0.9333333333333333}}, 1: {1: {'weight': 1.0}}, 2: {1: {'weight': 1.0}}, 3: {1: {'weight': 0.9666666666666667}}, 4: {1: {'weight': 1.0}}, 5: {1: {'weight': 0.9666666666666667}}, 6: {}, 7: {7: {'weight': 0.7666666666666667}}, 8: {}, 9: {13: {'weight': 0.4}, 6: {'weight': 0.26666666666666666}}, 13: {13: {'weight': 0.6333333333333333}}, 10: {1: {'weight': 0.5666666666666667}}, 11: {7: {'weight': 0.6333333333333333}}, 12: {12: {'weight': 0.4666666666666667}, 13: {'weight': 0.4}}, 14: {13: {'weight': 0.5666666666666667}}, 15: {13: {'weight': 0.5333333333333333}, 12: {'weight': 0.3333333333333333}}, 16: {13: {'weight': 0.43333333333333335}}, 17: {13: {'weight': 0.43333333333333335}, 12: {'weight': 0.4}}})
%package help
Summary: Development documents and examples for ASLPAw
Provides: python3-ASLPAw-doc
%description help
# ASLPAw



[](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/build-status/master)
[](https://scrutinizer-ci.com/code-intelligence)
[](https://lgtm.com/projects/g/fsssosei/ASLPAw/context:python)
[](https://www.codacy.com/manual/fsssosei/ASLPAw?utm_source=github.com&utm_medium=referral&utm_content=fsssosei/ASLPAw&utm_campaign=Badge_Grade)
[](https://scrutinizer-ci.com/g/fsssosei/ASLPAw/?branch=master)



*Adaptive overlapping community discovery algorithm package in python.*
ASLPAw can be used for disjoint and overlapping community detection and works on weighted/unweighted and directed/undirected networks.
ASLPAw is adaptive with virtually no configuration parameters.
This is an easy-to-understand reference implementation that is not optimized for efficiency, but is robust. The underlying NetworkX package is inherently inefficient and unsuitable for use on large networks.
The next release will extend support for multiple productivity packages, such as SNAP, graph-tool, and igraph.
## Installation
Installation can be done through pip. You must have python version >= 3.8
pip install ASLPAw
## Usage
The statement to import the package:
from ASLPAw_package import ASLPAw
Example:
>>> from networkx.generators.community import relaxed_caveman_graph
>>> #Set seed to make the results repeatable.
>>> data_graph = relaxed_caveman_graph(3, 6, 0.22, seed = 65535)
>>> ASLPAw(data_graph, seed=65535).adj
AdjacencyView({0: {2: {'weight': 0.9}}, 2: {2: {'weight': 0.9333333333333333}}, 1: {6: {'weight': 0.6}}, 6: {6: {'weight': 1.0}}, 3: {2: {'weight': 0.6}}, 4: {2: {'weight': 0.8666666666666667}}, 5: {2: {'weight': 0.9333333333333333}}, 7: {6: {'weight': 1.0}}, 8: {6: {'weight': 0.9666666666666667}}, 9: {6: {'weight': 0.9333333333333333}}, 10: {6: {'weight': 0.8666666666666667}}, 11: {6: {'weight': 0.9666666666666667}}, 12: {12: {'weight': 1.0333333333333334}}, 13: {12: {'weight': 0.9666666666666667}}, 14: {12: {'weight': 1.0}}, 15: {12: {'weight': 1.0}}, 16: {12: {'weight': 1.0}}, 17: {12: {'weight': 1.0}}})
>>> data_graph = relaxed_caveman_graph(3, 6, 0.39, seed = 65535)
>>> ASLPAw(data_graph, seed=65535).adj
AdjacencyView({0: {1: {'weight': 0.9333333333333333}}, 1: {1: {'weight': 1.0}}, 2: {1: {'weight': 1.0}}, 3: {1: {'weight': 0.9666666666666667}}, 4: {1: {'weight': 1.0}}, 5: {1: {'weight': 0.9666666666666667}}, 6: {}, 7: {7: {'weight': 0.7666666666666667}}, 8: {}, 9: {13: {'weight': 0.4}, 6: {'weight': 0.26666666666666666}}, 13: {13: {'weight': 0.6333333333333333}}, 10: {1: {'weight': 0.5666666666666667}}, 11: {7: {'weight': 0.6333333333333333}}, 12: {12: {'weight': 0.4666666666666667}, 13: {'weight': 0.4}}, 14: {13: {'weight': 0.5666666666666667}}, 15: {13: {'weight': 0.5333333333333333}, 12: {'weight': 0.3333333333333333}}, 16: {13: {'weight': 0.43333333333333335}}, 17: {13: {'weight': 0.43333333333333335}, 12: {'weight': 0.4}}})
%prep
%autosetup -n ASLPAw-2.2.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-ASLPAw -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 2.2.0-1
- Package Spec generated
|