1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
|
%global _empty_manifest_terminate_build 0
Name: python-atomics
Version: 1.0.2
Release: 1
Summary: Atomic lock-free primitives
License: GNU General Public License v3 (GPLv3)
URL: https://github.com/doodspav/atomics
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/cf/15/317e77646da3b316d49c93b8ea89e57c21b128e918f640c7130e7bff1c9e/atomics-1.0.2.tar.gz
Requires: python3-cffi
%description
# atomics
This library implements a wrapper around the lower level
[patomic](https://github.com/doodspav/patomic) C library (which is provided as
part of this library through the `build_patomic` command in `setup.py`).
It exposes hardware level lock-free (and address-free) atomic operations on a
memory buffer, either internally allocated or externally provided, via a set of
atomic classes.
The operations in these classes are both thread-safe and process-safe,
meaning that they can be used on a shared memory buffer for interprocess
communication (including with other languages such as C/C++).
## Table of Contents
<!--ts-->
* [Installing](#installing)
* [Examples](#examples)
* [Incorrect](#incorrect)
* [Multi-Threading](#multi-threading)
* [Multi-Processing](#multi-processing)
* [Docs](#docs)
* [Types](#types)
* [Construction](#construction)
* [Lifetime](#lifetime)
* [Contract](#contract)
* [Alignment](#alignment)
* [Properties](#properties)
* [Operations](#operations)
* [Special Methods](#special-methods)
* [Memory Order](#memory-order)
* [Exceptions](#exceptions)
* [Building](#building)
* [Future Thoughts](#future-thoughts)
* [Contributing](#contributing)
<!--te-->
## Installing
Linux/MacOS:
```shell
$ python3 -m pip install atomics
```
Windows:
```shell
$ py -m pip install atomics
```
This library requires Python3.6+, and has a dependency on the `cffi` library.
While the code here has no dependency on any implementation specific features,
the `cffi` library functions used are likely to not work outside of CPython and
PyPy.
Binaries are provided for the following platforms:
- Windows `[x86, amd64]`
- MacOSX `[x86_64, universal2]`
- Linux `[i686, x86_64, aarch64, ppc64le, s390x]` `[manylinux2014, musllinux_1_1]`
- Linux `[i686, x86_64]` `[manylinux1]`
If you are on one of these platforms and `pip` tries to build from source or
fails to install, make sure that you have the latest version of `pip` installed.
This can be done like so:
Linux/MacOS:
```shell
$ python3 -m pip install --upgrade pip
```
Windows:
```shell
$ py -m pip install --upgrade pip
```
If you need to build from source, check out the [Building](#building) section
as there are additional requirements for that.
## Examples
### Incorrect
The following example has a data race (`a`is modified from multiple threads).
The program is not correct, and `a`'s value will not equal `total` at the end.
```python
from threading import Thread
a = 0
def fn(n: int) -> None:
global a
for _ in range(n):
a += 1
if __name__ == "__main__":
# setup
total = 10_000_000
# run threads to completion
t1 = Thread(target=fn, args=(total // 2,))
t2 = Thread(target=fn, args=(total // 2,))
t1.start(), t2.start()
t1.join(), t2.join()
# print results
print(f"a[{a}] != total[{total}]")
```
### Multi-Threading
This example implements the previous example but `a` is now an `AtomicInt` which
can be safely modified from multiple threads (as opposed to `int` which can't).
The program is correct, and `a` will equal `total` at the end.
```python
import atomics
from threading import Thread
def fn(ai: atomics.INTEGRAL, n: int) -> None:
for _ in range(n):
ai.inc()
if __name__ == "__main__":
# setup
a = atomics.atomic(width=4, atype=atomics.INT)
total = 10_000
# run threads to completion
t1 = Thread(target=fn, args=(a, total // 2))
t2 = Thread(target=fn, args=(a, total // 2))
t1.start(), t2.start()
t1.join(), t2.join()
# print results
print(f"a[{a.load()}] == total[{total}]")
```
### Multi-Processing
This example is the counterpart to the above correct code, but using processes
to demonstrate that atomic operations are also safe across processes. This
program is also correct, and `a` will equal `total` at the end. It is also how
one might communicate with processes written in other languages such as C/C++.
```python
import atomics
from multiprocessing import Process, shared_memory
def fn(shmem_name: str, width: int, n: int) -> None:
shmem = shared_memory.SharedMemory(name=shmem_name)
buf = shmem.buf[:width]
with atomics.atomicview(buffer=buf, atype=atomics.INT) as a:
for _ in range(n):
a.inc()
del buf
shmem.close()
if __name__ == "__main__":
# setup
width = 4
shmem = shared_memory.SharedMemory(create=True, size=width)
buf = shmem.buf[:width]
total = 10_000
# run processes to completion
p1 = Process(target=fn, args=(shmem.name, width, total // 2))
p2 = Process(target=fn, args=(shmem.name, width, total // 2))
p1.start(), p2.start()
p1.join(), p2.join()
# print results and cleanup
with atomics.atomicview(buffer=buf, atype=atomics.INT) as a:
print(f"a[{a.load()}] == total[{total}]")
del buf
shmem.close()
shmem.unlink()
```
**NOTE:** Although `shared_memory` is showcased here, `atomicview` accepts any
type that supports the buffer protocol as its buffer argument, so other sources
of shared memory such as `mmap` could be used instead.
## Docs
### Types
The following helper (abstract-ish base) types are available in `atomics`:
- [`ANY`, `INTEGRAL`, `BYTES`, `INT`, `UINT`]
This library provides the following `Atomic` classes in `atomics.base`:
- `Atomic --- ANY`
- `AtomicIntegral --- INTEGRAL`
- `AtomicBytes --- BYTES`
- `AtomicInt --- INT`
- `AtomicUint --- UINT`
These `Atomic` classes are constructable on their own, but it is strongly
suggested using the `atomic()` function to construct them. Each class
corresponds to one of the above helper types (as indicated).
This library also provides `Atomic*View` (in `atomics.view`) and
`Atomic*ViewContext` (in `atomics.ctx`) counterparts to the `Atomic*` classes,
corresponding to the same helper types.
The latter of the two sets of classes can be constructed manually, although it
is strongly suggested using the `atomicview()` function to construct them. The
former set of classes cannot be constructed manually with the available types,
and should only be obtained by called `.__enter__()` on a corresponding
`Atomic*ViewContext` object.
Even though you should never need to directly use these classes (apart from the
helper types), they are provided to be used in type hinting. The inheritance
hierarchies are detailed in the [ARCHITECTURE.md](ARCHITECTURE.md) file
(available on GitHub).
### Construction
This library provides the functions `atomic` and `atomicview`, along with the
types `BYTES`, `INT`, and `UINT` (as well as `ANY` and `INTEGRAL`) to construct
atomic objects like so:
```python
import atomics
a = atomics.atomic(width=4, atype=atomics.INT)
print(a) # AtomicInt(value=0, width=4, readonly=False, signed=True)
buf = bytearray(2)
with atomics.atomicview(buffer=buf, atype=atomics.BYTES) as a:
print(a) # AtomicBytesView(value=b'\x00\x00', width=2, readonly=True)
```
You should only need to construct objects with an `atype` of `BYTES`, `INT`, or
`UINT`. Using an `atype` of `ANY` or `INTGERAL` will require additional kwargs,
and an `atype` of `ANY` will result in an object that doesn't actually expose
any atomic operations (only properties, explained in sections further on).
The `atomic()` function returns a corresponding `Atomic*` object.
The `atomicview()` function returns a corresponding `Atomic*ViewContext` object.
You can use this context object in a `with` statement to obtain an `Atomic*View`
object. The `buffer` parameter may be any object that supports the buffer
protocol.
Construction can raise `UnsupportedWidthException` and `AlignmentError`.
**NOTE:** the `width` property of `Atomic*View` objects is derived from the
buffer's length as if it were contiguous. It is equivalent to calling
`memoryview(buf).nbytes`.
### Lifetime
Objects of `Atomic*` classes (i.e. objects returned by the `atomic()` function)
have a self-contained buffer which is automatically freed. They can be passed
around and stored liked regular variables, and there is nothing special about
their lifetime.
Objects of `Atomic*ViewContext` classes (i.e. objects returned by the
`atomicview()` function) and `Atomic*View` objects obtained from said objects
have a much stricter usage contract.
#### Contract
The buffer used to construct an `Atomic*ViewContext` object (either directly or
through `atomicview()`) **MUST NOT** be invalidated until `.release()` is
called. This is aided by the fact that `.release()` is called automatically
in `.__exit__(...)` and `.__del__()`. As long as you immediately use the context
object in a `with` statement, and **DO NOT** invalidate the buffer inside that
`with` scope, you will always be safe.
The protections implemented are shown in this example:
```python
import atomics
buf = bytearray(4)
ctx = atomics.atomicview(buffer=buf, atype=atomics.INT)
# ctx.release() here will cause ctx.__enter__() to raise:
# ValueError("Cannot open context after calling 'release'.")
with ctx as a: # this calls ctx.__enter__()
# ctx.release() here will raise:
# ValueError("Cannot call 'release' while context is open.")
# ctx.__enter__() here will raise:
# ValueError("Cannot open context multiple times.")
print(a.load()) # ok
# ctx.__exit__(...) now called
# we can safely invalidate object 'buf' now
# ctx.__enter__() will raise:
# ValueError("Cannot open context after calling 'release'.")
# accessing object 'a' in any way will also raise an exception
```
Furthermore, in CPython, all built-in types supporting the buffer protocol will
throw a `BufferError` exception if you try to invalidate them while they're in
use (i.e. before calling `.release()`).
As a last resort, if you absolutely must invalidate the buffer inside the `with`
context (where you can't call `.release()`), you may call `.__exit__(...)`
manually on the `Atomic*ViewContext` object. This is to force explicitness
about something considered to be bad practice and dangerous.
Where it's allowed, `.release()` may be called multiple times with no
ill-effects. This also applies to `.__exit__(...)`, which has no restrictions
on where it can be called.
### Alignment
Different platforms may each have their own alignment requirements for atomic
operations of given widths. This library provides the `Alignment` class in
`atomics` to ensure that a given buffer meets these requirements.
```python
from atomics import Alignment
buf = bytearray(8)
align = Alignment(len(buf))
assert align.is_valid(buf)
```
If an atomic class is constructed from a misaligned buffer, the constructor will
raise `AlignmentError`.
By default, `.is_valid` calls `.is_valid_recommended`. The class `Alignment`
also exposes `.is_valid_minimum`. Currently, no atomic class makes use of the
minimum alignment, so checking for it is pointless. Support for it will be
added in a future release.
### Properties
All `Atomic*` and `Atomic*View` classes have the following properties:
- `width`: width in bytes of the underlying buffer (as if it were contiguous)
- `readonly`: whether the object supports modifying operations
- `ops_supported`: a sorted list of `OpType` enum values representing which
operations are supported on the object
Integral `Atomic*` and `Atomic*View` classes also have the following property:
- `signed`: whether arithmetic operations are signed or unsigned
In both cases, the behaviour on overflow is defined to wraparound.
### Operations
Base `Atomic` and `AtomicView` objects (corresponding to `ANY`) expose no atomic
operations.
`AtomicBytes` and `AtomicBytesView` objects support the following operations:
- **[base]**: `load`, `store`
- **[xchg]**: `exchange`, `cmpxchg_weak`, `cmpxchg_strong`
- **[bitwise]**: `bit_test`, `bit_compl`, `bit_set`, `bit_reset`
- **[binary]**: `bin_or`, `bin_xor`, `bin_and`, `bin_not`
- **[binary]**: `bin_fetch_or`, `bin_fetch_xor`, `bin_fetch_and`,
`bin_fetch_not`
Integral `Atomic*` and `Atomic*View` classes additionally support the following
operations:
- **[arithmetic]**: `add`, `sub`, `inc`, `dec`, `neg`
- **[arithmetic]**: `fetch_add`, `fetch_sub`, `fetch_inc`, `fetch_dec`,
`fetch_neg`
The usage of (most of) these functions is modelled directly on the C++11
`std::atomic` implementation found
[here](https://en.cppreference.com/w/cpp/atomic/atomic).
#### Compare Exchange (`cmpxchg_*`)
The `cmpxchg_*` functions return `CmpxchgResult`. This has the attributes
`.success: bool` which indicates whether the exchange took place, and
`.expected: T` which holds the original value of the atomic object.
The `cmpxchg_weak` function may fail spuriously, even if `expected` matches
the actual value. It should be used as shown below:
```python
import atomics
def atomic_mul(a: atomics.INTEGRAL, operand: int):
res = atomics.CmpxchgResult(success=False, expected=a.load())
while not res:
desired = res.expected * operand
res = a.cmpxchg_weak(expected=res.expected, desired=desired)
```
In a real implementation of `atomic_mul`, care should be taken to ensure that
`desired` fits in `a` (i.e. `desired.bit_length() < (a.width * 8)`, assuming 8
bits in a byte).
#### Exceptions
All operations can raise `UnsupportedOperationException` (so check
`.ops_supported` if you need to be sure).
Operations `load`, `store`, and `cmpxchg_*` can raise `MemoryOrderError` if
called with an invalid memory order. `MemoryOrder` enum values expose the
functions `is_valid_store_order()`, `is_valid_load_order()`, and
`is_valid_fail_order()` to check with.
### Special Methods
`AtomicBytes` and `AtomicBytesView` implement the `__bytes__` special method.
Integral `Atomic*` and `Atomic*View` classes implement the `__int__` special
method. They intentionally do not implement `__index__`.
There is a notable lack of any classes implementing special methods
corresponding to atomic operations; this is intentional. Assignment in Python is
not available as a special method, and we do not want to encourage people to
use other special methods with this class, lest it lead to them accidentally
using assignment when they meant `.store(...)`.
### Memory Order
The `MemoryOrder` enum class is provided in `atomics`, and the memory orders
are directly copied from C++11's `std::memory_order` documentation found
[here](https://en.cppreference.com/w/cpp/atomic/memory_order), except for
`CONSUME` (which would be pointless to expose in this library).
All operations have a default memory order, `SEQ_CST`. This will enforce
sequential consistency, and essentially make your multi-threaded and/or
multi-processed program be as correct as if it were to run in a single thread.
**IF YOU DO NOT UNDERSTAND THE LINKED DOCUMENTATION, DO NOT USE YOUR OWN
MEMORY ORDERS!!!**
Stick with the defaults to be safe. (And realistically, this is Python, you
won't get a noticeable performance boost from using a more lax memory order).
The following helper functions are provided:
- `.is_valid_store_order()` (for `store` op)
- `.is_valid_load_order()` ( for `load` op)
- `.is_valid_fail_order()` (for the `fail` ordering in `cmpxchg_*` ops)
Passing an invalid memory order to one of these ops will raise
`MemoryOrderError`.
### Exceptions
The following exceptions are available in `atomics.exc`:
- `AlignmentError`
- `MemoryOrderError`
- `UnsupportedWidthException`
- `UnsupportedOperationException`
## Building
**IMPORTANT:** Make sure you have the latest version of `pip` installed.
Using `setup.py`'s `build` or `bdist_wheel` commands will run the
`build_patomic` command (which you can also run directly).
This clones the `patomic` library into a temporary directory, builds it, and
then copies the shared library into `atomics._clib`.
This requires that `git` be installed on your system (a requirement of the
`GitPython` module). You will also need an ANSI/C90 compliant C compiler
(although ideally a more recent compiler should be used). `CMake` is also
required but should be automatically `pip install`'d if not available.
If you absolutely cannot get `build_patomic` to work, go to
[patomic](https://github.com/doodspav/patomic), follow the instructions on
building it (making sure to build the shared library version), and then
copy-paste the shared library file into `atomics._clib` manually.
**NOTE:**
Currently, the library builds a dummy extension in order to trick `setuptools`
into building a non-purepython wheel. If you are ok with a purepython wheel,
then feel free to remove the code for that from `setup.py` (at the bottom).
Otherwise, you will need a C99 compliant C compiler, and probably the
development libraries/headers for whichever version of Python you're using.
## Future Thoughts
- add docstrings
- add tests
- add support for `minimum` alignment
- add support for constructing `Atomic` classes' buffers in shared memory
- add support for passing `Atomic` objects to sub-processes and sub-interpreters
- reimplement in C or Cython for performance gains (preliminary benchmarks
put such implementations at 2x the speed of a raw `int`)
## Contributing
I don't have a guide for contributing yet. This section is here to make the
following two points:
- new operations must first be implemented in `patomic` before this library can
be updated
- new architectures, widths, and existing unsupported operations must be
supported in `patomic` (no change required in this library)
%package -n python3-atomics
Summary: Atomic lock-free primitives
Provides: python-atomics
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-atomics
# atomics
This library implements a wrapper around the lower level
[patomic](https://github.com/doodspav/patomic) C library (which is provided as
part of this library through the `build_patomic` command in `setup.py`).
It exposes hardware level lock-free (and address-free) atomic operations on a
memory buffer, either internally allocated or externally provided, via a set of
atomic classes.
The operations in these classes are both thread-safe and process-safe,
meaning that they can be used on a shared memory buffer for interprocess
communication (including with other languages such as C/C++).
## Table of Contents
<!--ts-->
* [Installing](#installing)
* [Examples](#examples)
* [Incorrect](#incorrect)
* [Multi-Threading](#multi-threading)
* [Multi-Processing](#multi-processing)
* [Docs](#docs)
* [Types](#types)
* [Construction](#construction)
* [Lifetime](#lifetime)
* [Contract](#contract)
* [Alignment](#alignment)
* [Properties](#properties)
* [Operations](#operations)
* [Special Methods](#special-methods)
* [Memory Order](#memory-order)
* [Exceptions](#exceptions)
* [Building](#building)
* [Future Thoughts](#future-thoughts)
* [Contributing](#contributing)
<!--te-->
## Installing
Linux/MacOS:
```shell
$ python3 -m pip install atomics
```
Windows:
```shell
$ py -m pip install atomics
```
This library requires Python3.6+, and has a dependency on the `cffi` library.
While the code here has no dependency on any implementation specific features,
the `cffi` library functions used are likely to not work outside of CPython and
PyPy.
Binaries are provided for the following platforms:
- Windows `[x86, amd64]`
- MacOSX `[x86_64, universal2]`
- Linux `[i686, x86_64, aarch64, ppc64le, s390x]` `[manylinux2014, musllinux_1_1]`
- Linux `[i686, x86_64]` `[manylinux1]`
If you are on one of these platforms and `pip` tries to build from source or
fails to install, make sure that you have the latest version of `pip` installed.
This can be done like so:
Linux/MacOS:
```shell
$ python3 -m pip install --upgrade pip
```
Windows:
```shell
$ py -m pip install --upgrade pip
```
If you need to build from source, check out the [Building](#building) section
as there are additional requirements for that.
## Examples
### Incorrect
The following example has a data race (`a`is modified from multiple threads).
The program is not correct, and `a`'s value will not equal `total` at the end.
```python
from threading import Thread
a = 0
def fn(n: int) -> None:
global a
for _ in range(n):
a += 1
if __name__ == "__main__":
# setup
total = 10_000_000
# run threads to completion
t1 = Thread(target=fn, args=(total // 2,))
t2 = Thread(target=fn, args=(total // 2,))
t1.start(), t2.start()
t1.join(), t2.join()
# print results
print(f"a[{a}] != total[{total}]")
```
### Multi-Threading
This example implements the previous example but `a` is now an `AtomicInt` which
can be safely modified from multiple threads (as opposed to `int` which can't).
The program is correct, and `a` will equal `total` at the end.
```python
import atomics
from threading import Thread
def fn(ai: atomics.INTEGRAL, n: int) -> None:
for _ in range(n):
ai.inc()
if __name__ == "__main__":
# setup
a = atomics.atomic(width=4, atype=atomics.INT)
total = 10_000
# run threads to completion
t1 = Thread(target=fn, args=(a, total // 2))
t2 = Thread(target=fn, args=(a, total // 2))
t1.start(), t2.start()
t1.join(), t2.join()
# print results
print(f"a[{a.load()}] == total[{total}]")
```
### Multi-Processing
This example is the counterpart to the above correct code, but using processes
to demonstrate that atomic operations are also safe across processes. This
program is also correct, and `a` will equal `total` at the end. It is also how
one might communicate with processes written in other languages such as C/C++.
```python
import atomics
from multiprocessing import Process, shared_memory
def fn(shmem_name: str, width: int, n: int) -> None:
shmem = shared_memory.SharedMemory(name=shmem_name)
buf = shmem.buf[:width]
with atomics.atomicview(buffer=buf, atype=atomics.INT) as a:
for _ in range(n):
a.inc()
del buf
shmem.close()
if __name__ == "__main__":
# setup
width = 4
shmem = shared_memory.SharedMemory(create=True, size=width)
buf = shmem.buf[:width]
total = 10_000
# run processes to completion
p1 = Process(target=fn, args=(shmem.name, width, total // 2))
p2 = Process(target=fn, args=(shmem.name, width, total // 2))
p1.start(), p2.start()
p1.join(), p2.join()
# print results and cleanup
with atomics.atomicview(buffer=buf, atype=atomics.INT) as a:
print(f"a[{a.load()}] == total[{total}]")
del buf
shmem.close()
shmem.unlink()
```
**NOTE:** Although `shared_memory` is showcased here, `atomicview` accepts any
type that supports the buffer protocol as its buffer argument, so other sources
of shared memory such as `mmap` could be used instead.
## Docs
### Types
The following helper (abstract-ish base) types are available in `atomics`:
- [`ANY`, `INTEGRAL`, `BYTES`, `INT`, `UINT`]
This library provides the following `Atomic` classes in `atomics.base`:
- `Atomic --- ANY`
- `AtomicIntegral --- INTEGRAL`
- `AtomicBytes --- BYTES`
- `AtomicInt --- INT`
- `AtomicUint --- UINT`
These `Atomic` classes are constructable on their own, but it is strongly
suggested using the `atomic()` function to construct them. Each class
corresponds to one of the above helper types (as indicated).
This library also provides `Atomic*View` (in `atomics.view`) and
`Atomic*ViewContext` (in `atomics.ctx`) counterparts to the `Atomic*` classes,
corresponding to the same helper types.
The latter of the two sets of classes can be constructed manually, although it
is strongly suggested using the `atomicview()` function to construct them. The
former set of classes cannot be constructed manually with the available types,
and should only be obtained by called `.__enter__()` on a corresponding
`Atomic*ViewContext` object.
Even though you should never need to directly use these classes (apart from the
helper types), they are provided to be used in type hinting. The inheritance
hierarchies are detailed in the [ARCHITECTURE.md](ARCHITECTURE.md) file
(available on GitHub).
### Construction
This library provides the functions `atomic` and `atomicview`, along with the
types `BYTES`, `INT`, and `UINT` (as well as `ANY` and `INTEGRAL`) to construct
atomic objects like so:
```python
import atomics
a = atomics.atomic(width=4, atype=atomics.INT)
print(a) # AtomicInt(value=0, width=4, readonly=False, signed=True)
buf = bytearray(2)
with atomics.atomicview(buffer=buf, atype=atomics.BYTES) as a:
print(a) # AtomicBytesView(value=b'\x00\x00', width=2, readonly=True)
```
You should only need to construct objects with an `atype` of `BYTES`, `INT`, or
`UINT`. Using an `atype` of `ANY` or `INTGERAL` will require additional kwargs,
and an `atype` of `ANY` will result in an object that doesn't actually expose
any atomic operations (only properties, explained in sections further on).
The `atomic()` function returns a corresponding `Atomic*` object.
The `atomicview()` function returns a corresponding `Atomic*ViewContext` object.
You can use this context object in a `with` statement to obtain an `Atomic*View`
object. The `buffer` parameter may be any object that supports the buffer
protocol.
Construction can raise `UnsupportedWidthException` and `AlignmentError`.
**NOTE:** the `width` property of `Atomic*View` objects is derived from the
buffer's length as if it were contiguous. It is equivalent to calling
`memoryview(buf).nbytes`.
### Lifetime
Objects of `Atomic*` classes (i.e. objects returned by the `atomic()` function)
have a self-contained buffer which is automatically freed. They can be passed
around and stored liked regular variables, and there is nothing special about
their lifetime.
Objects of `Atomic*ViewContext` classes (i.e. objects returned by the
`atomicview()` function) and `Atomic*View` objects obtained from said objects
have a much stricter usage contract.
#### Contract
The buffer used to construct an `Atomic*ViewContext` object (either directly or
through `atomicview()`) **MUST NOT** be invalidated until `.release()` is
called. This is aided by the fact that `.release()` is called automatically
in `.__exit__(...)` and `.__del__()`. As long as you immediately use the context
object in a `with` statement, and **DO NOT** invalidate the buffer inside that
`with` scope, you will always be safe.
The protections implemented are shown in this example:
```python
import atomics
buf = bytearray(4)
ctx = atomics.atomicview(buffer=buf, atype=atomics.INT)
# ctx.release() here will cause ctx.__enter__() to raise:
# ValueError("Cannot open context after calling 'release'.")
with ctx as a: # this calls ctx.__enter__()
# ctx.release() here will raise:
# ValueError("Cannot call 'release' while context is open.")
# ctx.__enter__() here will raise:
# ValueError("Cannot open context multiple times.")
print(a.load()) # ok
# ctx.__exit__(...) now called
# we can safely invalidate object 'buf' now
# ctx.__enter__() will raise:
# ValueError("Cannot open context after calling 'release'.")
# accessing object 'a' in any way will also raise an exception
```
Furthermore, in CPython, all built-in types supporting the buffer protocol will
throw a `BufferError` exception if you try to invalidate them while they're in
use (i.e. before calling `.release()`).
As a last resort, if you absolutely must invalidate the buffer inside the `with`
context (where you can't call `.release()`), you may call `.__exit__(...)`
manually on the `Atomic*ViewContext` object. This is to force explicitness
about something considered to be bad practice and dangerous.
Where it's allowed, `.release()` may be called multiple times with no
ill-effects. This also applies to `.__exit__(...)`, which has no restrictions
on where it can be called.
### Alignment
Different platforms may each have their own alignment requirements for atomic
operations of given widths. This library provides the `Alignment` class in
`atomics` to ensure that a given buffer meets these requirements.
```python
from atomics import Alignment
buf = bytearray(8)
align = Alignment(len(buf))
assert align.is_valid(buf)
```
If an atomic class is constructed from a misaligned buffer, the constructor will
raise `AlignmentError`.
By default, `.is_valid` calls `.is_valid_recommended`. The class `Alignment`
also exposes `.is_valid_minimum`. Currently, no atomic class makes use of the
minimum alignment, so checking for it is pointless. Support for it will be
added in a future release.
### Properties
All `Atomic*` and `Atomic*View` classes have the following properties:
- `width`: width in bytes of the underlying buffer (as if it were contiguous)
- `readonly`: whether the object supports modifying operations
- `ops_supported`: a sorted list of `OpType` enum values representing which
operations are supported on the object
Integral `Atomic*` and `Atomic*View` classes also have the following property:
- `signed`: whether arithmetic operations are signed or unsigned
In both cases, the behaviour on overflow is defined to wraparound.
### Operations
Base `Atomic` and `AtomicView` objects (corresponding to `ANY`) expose no atomic
operations.
`AtomicBytes` and `AtomicBytesView` objects support the following operations:
- **[base]**: `load`, `store`
- **[xchg]**: `exchange`, `cmpxchg_weak`, `cmpxchg_strong`
- **[bitwise]**: `bit_test`, `bit_compl`, `bit_set`, `bit_reset`
- **[binary]**: `bin_or`, `bin_xor`, `bin_and`, `bin_not`
- **[binary]**: `bin_fetch_or`, `bin_fetch_xor`, `bin_fetch_and`,
`bin_fetch_not`
Integral `Atomic*` and `Atomic*View` classes additionally support the following
operations:
- **[arithmetic]**: `add`, `sub`, `inc`, `dec`, `neg`
- **[arithmetic]**: `fetch_add`, `fetch_sub`, `fetch_inc`, `fetch_dec`,
`fetch_neg`
The usage of (most of) these functions is modelled directly on the C++11
`std::atomic` implementation found
[here](https://en.cppreference.com/w/cpp/atomic/atomic).
#### Compare Exchange (`cmpxchg_*`)
The `cmpxchg_*` functions return `CmpxchgResult`. This has the attributes
`.success: bool` which indicates whether the exchange took place, and
`.expected: T` which holds the original value of the atomic object.
The `cmpxchg_weak` function may fail spuriously, even if `expected` matches
the actual value. It should be used as shown below:
```python
import atomics
def atomic_mul(a: atomics.INTEGRAL, operand: int):
res = atomics.CmpxchgResult(success=False, expected=a.load())
while not res:
desired = res.expected * operand
res = a.cmpxchg_weak(expected=res.expected, desired=desired)
```
In a real implementation of `atomic_mul`, care should be taken to ensure that
`desired` fits in `a` (i.e. `desired.bit_length() < (a.width * 8)`, assuming 8
bits in a byte).
#### Exceptions
All operations can raise `UnsupportedOperationException` (so check
`.ops_supported` if you need to be sure).
Operations `load`, `store`, and `cmpxchg_*` can raise `MemoryOrderError` if
called with an invalid memory order. `MemoryOrder` enum values expose the
functions `is_valid_store_order()`, `is_valid_load_order()`, and
`is_valid_fail_order()` to check with.
### Special Methods
`AtomicBytes` and `AtomicBytesView` implement the `__bytes__` special method.
Integral `Atomic*` and `Atomic*View` classes implement the `__int__` special
method. They intentionally do not implement `__index__`.
There is a notable lack of any classes implementing special methods
corresponding to atomic operations; this is intentional. Assignment in Python is
not available as a special method, and we do not want to encourage people to
use other special methods with this class, lest it lead to them accidentally
using assignment when they meant `.store(...)`.
### Memory Order
The `MemoryOrder` enum class is provided in `atomics`, and the memory orders
are directly copied from C++11's `std::memory_order` documentation found
[here](https://en.cppreference.com/w/cpp/atomic/memory_order), except for
`CONSUME` (which would be pointless to expose in this library).
All operations have a default memory order, `SEQ_CST`. This will enforce
sequential consistency, and essentially make your multi-threaded and/or
multi-processed program be as correct as if it were to run in a single thread.
**IF YOU DO NOT UNDERSTAND THE LINKED DOCUMENTATION, DO NOT USE YOUR OWN
MEMORY ORDERS!!!**
Stick with the defaults to be safe. (And realistically, this is Python, you
won't get a noticeable performance boost from using a more lax memory order).
The following helper functions are provided:
- `.is_valid_store_order()` (for `store` op)
- `.is_valid_load_order()` ( for `load` op)
- `.is_valid_fail_order()` (for the `fail` ordering in `cmpxchg_*` ops)
Passing an invalid memory order to one of these ops will raise
`MemoryOrderError`.
### Exceptions
The following exceptions are available in `atomics.exc`:
- `AlignmentError`
- `MemoryOrderError`
- `UnsupportedWidthException`
- `UnsupportedOperationException`
## Building
**IMPORTANT:** Make sure you have the latest version of `pip` installed.
Using `setup.py`'s `build` or `bdist_wheel` commands will run the
`build_patomic` command (which you can also run directly).
This clones the `patomic` library into a temporary directory, builds it, and
then copies the shared library into `atomics._clib`.
This requires that `git` be installed on your system (a requirement of the
`GitPython` module). You will also need an ANSI/C90 compliant C compiler
(although ideally a more recent compiler should be used). `CMake` is also
required but should be automatically `pip install`'d if not available.
If you absolutely cannot get `build_patomic` to work, go to
[patomic](https://github.com/doodspav/patomic), follow the instructions on
building it (making sure to build the shared library version), and then
copy-paste the shared library file into `atomics._clib` manually.
**NOTE:**
Currently, the library builds a dummy extension in order to trick `setuptools`
into building a non-purepython wheel. If you are ok with a purepython wheel,
then feel free to remove the code for that from `setup.py` (at the bottom).
Otherwise, you will need a C99 compliant C compiler, and probably the
development libraries/headers for whichever version of Python you're using.
## Future Thoughts
- add docstrings
- add tests
- add support for `minimum` alignment
- add support for constructing `Atomic` classes' buffers in shared memory
- add support for passing `Atomic` objects to sub-processes and sub-interpreters
- reimplement in C or Cython for performance gains (preliminary benchmarks
put such implementations at 2x the speed of a raw `int`)
## Contributing
I don't have a guide for contributing yet. This section is here to make the
following two points:
- new operations must first be implemented in `patomic` before this library can
be updated
- new architectures, widths, and existing unsupported operations must be
supported in `patomic` (no change required in this library)
%package help
Summary: Development documents and examples for atomics
Provides: python3-atomics-doc
%description help
# atomics
This library implements a wrapper around the lower level
[patomic](https://github.com/doodspav/patomic) C library (which is provided as
part of this library through the `build_patomic` command in `setup.py`).
It exposes hardware level lock-free (and address-free) atomic operations on a
memory buffer, either internally allocated or externally provided, via a set of
atomic classes.
The operations in these classes are both thread-safe and process-safe,
meaning that they can be used on a shared memory buffer for interprocess
communication (including with other languages such as C/C++).
## Table of Contents
<!--ts-->
* [Installing](#installing)
* [Examples](#examples)
* [Incorrect](#incorrect)
* [Multi-Threading](#multi-threading)
* [Multi-Processing](#multi-processing)
* [Docs](#docs)
* [Types](#types)
* [Construction](#construction)
* [Lifetime](#lifetime)
* [Contract](#contract)
* [Alignment](#alignment)
* [Properties](#properties)
* [Operations](#operations)
* [Special Methods](#special-methods)
* [Memory Order](#memory-order)
* [Exceptions](#exceptions)
* [Building](#building)
* [Future Thoughts](#future-thoughts)
* [Contributing](#contributing)
<!--te-->
## Installing
Linux/MacOS:
```shell
$ python3 -m pip install atomics
```
Windows:
```shell
$ py -m pip install atomics
```
This library requires Python3.6+, and has a dependency on the `cffi` library.
While the code here has no dependency on any implementation specific features,
the `cffi` library functions used are likely to not work outside of CPython and
PyPy.
Binaries are provided for the following platforms:
- Windows `[x86, amd64]`
- MacOSX `[x86_64, universal2]`
- Linux `[i686, x86_64, aarch64, ppc64le, s390x]` `[manylinux2014, musllinux_1_1]`
- Linux `[i686, x86_64]` `[manylinux1]`
If you are on one of these platforms and `pip` tries to build from source or
fails to install, make sure that you have the latest version of `pip` installed.
This can be done like so:
Linux/MacOS:
```shell
$ python3 -m pip install --upgrade pip
```
Windows:
```shell
$ py -m pip install --upgrade pip
```
If you need to build from source, check out the [Building](#building) section
as there are additional requirements for that.
## Examples
### Incorrect
The following example has a data race (`a`is modified from multiple threads).
The program is not correct, and `a`'s value will not equal `total` at the end.
```python
from threading import Thread
a = 0
def fn(n: int) -> None:
global a
for _ in range(n):
a += 1
if __name__ == "__main__":
# setup
total = 10_000_000
# run threads to completion
t1 = Thread(target=fn, args=(total // 2,))
t2 = Thread(target=fn, args=(total // 2,))
t1.start(), t2.start()
t1.join(), t2.join()
# print results
print(f"a[{a}] != total[{total}]")
```
### Multi-Threading
This example implements the previous example but `a` is now an `AtomicInt` which
can be safely modified from multiple threads (as opposed to `int` which can't).
The program is correct, and `a` will equal `total` at the end.
```python
import atomics
from threading import Thread
def fn(ai: atomics.INTEGRAL, n: int) -> None:
for _ in range(n):
ai.inc()
if __name__ == "__main__":
# setup
a = atomics.atomic(width=4, atype=atomics.INT)
total = 10_000
# run threads to completion
t1 = Thread(target=fn, args=(a, total // 2))
t2 = Thread(target=fn, args=(a, total // 2))
t1.start(), t2.start()
t1.join(), t2.join()
# print results
print(f"a[{a.load()}] == total[{total}]")
```
### Multi-Processing
This example is the counterpart to the above correct code, but using processes
to demonstrate that atomic operations are also safe across processes. This
program is also correct, and `a` will equal `total` at the end. It is also how
one might communicate with processes written in other languages such as C/C++.
```python
import atomics
from multiprocessing import Process, shared_memory
def fn(shmem_name: str, width: int, n: int) -> None:
shmem = shared_memory.SharedMemory(name=shmem_name)
buf = shmem.buf[:width]
with atomics.atomicview(buffer=buf, atype=atomics.INT) as a:
for _ in range(n):
a.inc()
del buf
shmem.close()
if __name__ == "__main__":
# setup
width = 4
shmem = shared_memory.SharedMemory(create=True, size=width)
buf = shmem.buf[:width]
total = 10_000
# run processes to completion
p1 = Process(target=fn, args=(shmem.name, width, total // 2))
p2 = Process(target=fn, args=(shmem.name, width, total // 2))
p1.start(), p2.start()
p1.join(), p2.join()
# print results and cleanup
with atomics.atomicview(buffer=buf, atype=atomics.INT) as a:
print(f"a[{a.load()}] == total[{total}]")
del buf
shmem.close()
shmem.unlink()
```
**NOTE:** Although `shared_memory` is showcased here, `atomicview` accepts any
type that supports the buffer protocol as its buffer argument, so other sources
of shared memory such as `mmap` could be used instead.
## Docs
### Types
The following helper (abstract-ish base) types are available in `atomics`:
- [`ANY`, `INTEGRAL`, `BYTES`, `INT`, `UINT`]
This library provides the following `Atomic` classes in `atomics.base`:
- `Atomic --- ANY`
- `AtomicIntegral --- INTEGRAL`
- `AtomicBytes --- BYTES`
- `AtomicInt --- INT`
- `AtomicUint --- UINT`
These `Atomic` classes are constructable on their own, but it is strongly
suggested using the `atomic()` function to construct them. Each class
corresponds to one of the above helper types (as indicated).
This library also provides `Atomic*View` (in `atomics.view`) and
`Atomic*ViewContext` (in `atomics.ctx`) counterparts to the `Atomic*` classes,
corresponding to the same helper types.
The latter of the two sets of classes can be constructed manually, although it
is strongly suggested using the `atomicview()` function to construct them. The
former set of classes cannot be constructed manually with the available types,
and should only be obtained by called `.__enter__()` on a corresponding
`Atomic*ViewContext` object.
Even though you should never need to directly use these classes (apart from the
helper types), they are provided to be used in type hinting. The inheritance
hierarchies are detailed in the [ARCHITECTURE.md](ARCHITECTURE.md) file
(available on GitHub).
### Construction
This library provides the functions `atomic` and `atomicview`, along with the
types `BYTES`, `INT`, and `UINT` (as well as `ANY` and `INTEGRAL`) to construct
atomic objects like so:
```python
import atomics
a = atomics.atomic(width=4, atype=atomics.INT)
print(a) # AtomicInt(value=0, width=4, readonly=False, signed=True)
buf = bytearray(2)
with atomics.atomicview(buffer=buf, atype=atomics.BYTES) as a:
print(a) # AtomicBytesView(value=b'\x00\x00', width=2, readonly=True)
```
You should only need to construct objects with an `atype` of `BYTES`, `INT`, or
`UINT`. Using an `atype` of `ANY` or `INTGERAL` will require additional kwargs,
and an `atype` of `ANY` will result in an object that doesn't actually expose
any atomic operations (only properties, explained in sections further on).
The `atomic()` function returns a corresponding `Atomic*` object.
The `atomicview()` function returns a corresponding `Atomic*ViewContext` object.
You can use this context object in a `with` statement to obtain an `Atomic*View`
object. The `buffer` parameter may be any object that supports the buffer
protocol.
Construction can raise `UnsupportedWidthException` and `AlignmentError`.
**NOTE:** the `width` property of `Atomic*View` objects is derived from the
buffer's length as if it were contiguous. It is equivalent to calling
`memoryview(buf).nbytes`.
### Lifetime
Objects of `Atomic*` classes (i.e. objects returned by the `atomic()` function)
have a self-contained buffer which is automatically freed. They can be passed
around and stored liked regular variables, and there is nothing special about
their lifetime.
Objects of `Atomic*ViewContext` classes (i.e. objects returned by the
`atomicview()` function) and `Atomic*View` objects obtained from said objects
have a much stricter usage contract.
#### Contract
The buffer used to construct an `Atomic*ViewContext` object (either directly or
through `atomicview()`) **MUST NOT** be invalidated until `.release()` is
called. This is aided by the fact that `.release()` is called automatically
in `.__exit__(...)` and `.__del__()`. As long as you immediately use the context
object in a `with` statement, and **DO NOT** invalidate the buffer inside that
`with` scope, you will always be safe.
The protections implemented are shown in this example:
```python
import atomics
buf = bytearray(4)
ctx = atomics.atomicview(buffer=buf, atype=atomics.INT)
# ctx.release() here will cause ctx.__enter__() to raise:
# ValueError("Cannot open context after calling 'release'.")
with ctx as a: # this calls ctx.__enter__()
# ctx.release() here will raise:
# ValueError("Cannot call 'release' while context is open.")
# ctx.__enter__() here will raise:
# ValueError("Cannot open context multiple times.")
print(a.load()) # ok
# ctx.__exit__(...) now called
# we can safely invalidate object 'buf' now
# ctx.__enter__() will raise:
# ValueError("Cannot open context after calling 'release'.")
# accessing object 'a' in any way will also raise an exception
```
Furthermore, in CPython, all built-in types supporting the buffer protocol will
throw a `BufferError` exception if you try to invalidate them while they're in
use (i.e. before calling `.release()`).
As a last resort, if you absolutely must invalidate the buffer inside the `with`
context (where you can't call `.release()`), you may call `.__exit__(...)`
manually on the `Atomic*ViewContext` object. This is to force explicitness
about something considered to be bad practice and dangerous.
Where it's allowed, `.release()` may be called multiple times with no
ill-effects. This also applies to `.__exit__(...)`, which has no restrictions
on where it can be called.
### Alignment
Different platforms may each have their own alignment requirements for atomic
operations of given widths. This library provides the `Alignment` class in
`atomics` to ensure that a given buffer meets these requirements.
```python
from atomics import Alignment
buf = bytearray(8)
align = Alignment(len(buf))
assert align.is_valid(buf)
```
If an atomic class is constructed from a misaligned buffer, the constructor will
raise `AlignmentError`.
By default, `.is_valid` calls `.is_valid_recommended`. The class `Alignment`
also exposes `.is_valid_minimum`. Currently, no atomic class makes use of the
minimum alignment, so checking for it is pointless. Support for it will be
added in a future release.
### Properties
All `Atomic*` and `Atomic*View` classes have the following properties:
- `width`: width in bytes of the underlying buffer (as if it were contiguous)
- `readonly`: whether the object supports modifying operations
- `ops_supported`: a sorted list of `OpType` enum values representing which
operations are supported on the object
Integral `Atomic*` and `Atomic*View` classes also have the following property:
- `signed`: whether arithmetic operations are signed or unsigned
In both cases, the behaviour on overflow is defined to wraparound.
### Operations
Base `Atomic` and `AtomicView` objects (corresponding to `ANY`) expose no atomic
operations.
`AtomicBytes` and `AtomicBytesView` objects support the following operations:
- **[base]**: `load`, `store`
- **[xchg]**: `exchange`, `cmpxchg_weak`, `cmpxchg_strong`
- **[bitwise]**: `bit_test`, `bit_compl`, `bit_set`, `bit_reset`
- **[binary]**: `bin_or`, `bin_xor`, `bin_and`, `bin_not`
- **[binary]**: `bin_fetch_or`, `bin_fetch_xor`, `bin_fetch_and`,
`bin_fetch_not`
Integral `Atomic*` and `Atomic*View` classes additionally support the following
operations:
- **[arithmetic]**: `add`, `sub`, `inc`, `dec`, `neg`
- **[arithmetic]**: `fetch_add`, `fetch_sub`, `fetch_inc`, `fetch_dec`,
`fetch_neg`
The usage of (most of) these functions is modelled directly on the C++11
`std::atomic` implementation found
[here](https://en.cppreference.com/w/cpp/atomic/atomic).
#### Compare Exchange (`cmpxchg_*`)
The `cmpxchg_*` functions return `CmpxchgResult`. This has the attributes
`.success: bool` which indicates whether the exchange took place, and
`.expected: T` which holds the original value of the atomic object.
The `cmpxchg_weak` function may fail spuriously, even if `expected` matches
the actual value. It should be used as shown below:
```python
import atomics
def atomic_mul(a: atomics.INTEGRAL, operand: int):
res = atomics.CmpxchgResult(success=False, expected=a.load())
while not res:
desired = res.expected * operand
res = a.cmpxchg_weak(expected=res.expected, desired=desired)
```
In a real implementation of `atomic_mul`, care should be taken to ensure that
`desired` fits in `a` (i.e. `desired.bit_length() < (a.width * 8)`, assuming 8
bits in a byte).
#### Exceptions
All operations can raise `UnsupportedOperationException` (so check
`.ops_supported` if you need to be sure).
Operations `load`, `store`, and `cmpxchg_*` can raise `MemoryOrderError` if
called with an invalid memory order. `MemoryOrder` enum values expose the
functions `is_valid_store_order()`, `is_valid_load_order()`, and
`is_valid_fail_order()` to check with.
### Special Methods
`AtomicBytes` and `AtomicBytesView` implement the `__bytes__` special method.
Integral `Atomic*` and `Atomic*View` classes implement the `__int__` special
method. They intentionally do not implement `__index__`.
There is a notable lack of any classes implementing special methods
corresponding to atomic operations; this is intentional. Assignment in Python is
not available as a special method, and we do not want to encourage people to
use other special methods with this class, lest it lead to them accidentally
using assignment when they meant `.store(...)`.
### Memory Order
The `MemoryOrder` enum class is provided in `atomics`, and the memory orders
are directly copied from C++11's `std::memory_order` documentation found
[here](https://en.cppreference.com/w/cpp/atomic/memory_order), except for
`CONSUME` (which would be pointless to expose in this library).
All operations have a default memory order, `SEQ_CST`. This will enforce
sequential consistency, and essentially make your multi-threaded and/or
multi-processed program be as correct as if it were to run in a single thread.
**IF YOU DO NOT UNDERSTAND THE LINKED DOCUMENTATION, DO NOT USE YOUR OWN
MEMORY ORDERS!!!**
Stick with the defaults to be safe. (And realistically, this is Python, you
won't get a noticeable performance boost from using a more lax memory order).
The following helper functions are provided:
- `.is_valid_store_order()` (for `store` op)
- `.is_valid_load_order()` ( for `load` op)
- `.is_valid_fail_order()` (for the `fail` ordering in `cmpxchg_*` ops)
Passing an invalid memory order to one of these ops will raise
`MemoryOrderError`.
### Exceptions
The following exceptions are available in `atomics.exc`:
- `AlignmentError`
- `MemoryOrderError`
- `UnsupportedWidthException`
- `UnsupportedOperationException`
## Building
**IMPORTANT:** Make sure you have the latest version of `pip` installed.
Using `setup.py`'s `build` or `bdist_wheel` commands will run the
`build_patomic` command (which you can also run directly).
This clones the `patomic` library into a temporary directory, builds it, and
then copies the shared library into `atomics._clib`.
This requires that `git` be installed on your system (a requirement of the
`GitPython` module). You will also need an ANSI/C90 compliant C compiler
(although ideally a more recent compiler should be used). `CMake` is also
required but should be automatically `pip install`'d if not available.
If you absolutely cannot get `build_patomic` to work, go to
[patomic](https://github.com/doodspav/patomic), follow the instructions on
building it (making sure to build the shared library version), and then
copy-paste the shared library file into `atomics._clib` manually.
**NOTE:**
Currently, the library builds a dummy extension in order to trick `setuptools`
into building a non-purepython wheel. If you are ok with a purepython wheel,
then feel free to remove the code for that from `setup.py` (at the bottom).
Otherwise, you will need a C99 compliant C compiler, and probably the
development libraries/headers for whichever version of Python you're using.
## Future Thoughts
- add docstrings
- add tests
- add support for `minimum` alignment
- add support for constructing `Atomic` classes' buffers in shared memory
- add support for passing `Atomic` objects to sub-processes and sub-interpreters
- reimplement in C or Cython for performance gains (preliminary benchmarks
put such implementations at 2x the speed of a raw `int`)
## Contributing
I don't have a guide for contributing yet. This section is here to make the
following two points:
- new operations must first be implemented in `patomic` before this library can
be updated
- new architectures, widths, and existing unsupported operations must be
supported in `patomic` (no change required in this library)
%prep
%autosetup -n atomics-1.0.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-atomics -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.2-1
- Package Spec generated
|