summaryrefslogtreecommitdiff
path: root/python-augmentation-engine.spec
blob: cccecf2dced5e103fa8b7d3ffd676926adee52f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
%global _empty_manifest_terminate_build 0
Name:		python-augmentation-engine
Version:	0.1.2
Release:	1
Summary:	Solar Filaments data augmentation demo package
License:	MIT License
URL:		https://bitbucket.org/gsudmlab/augmentation_engine/src/master/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/e3/6e/7349c0218e5af7f68c817c6391d161b2295d7f2ba5ad9d063e6c887b0dfc/augmentation_engine-0.1.2.tar.gz
BuildArch:	noarch

Requires:	python3-sortedcontainers
Requires:	python3-opencv-python
Requires:	python3-torchvision
Requires:	python3-pillow
Requires:	python3-pycocotools

%description
```python
pip install augmentation_engine
```
    Requirement already satisfied: augmentation_engine in d:\gsu_assignments\semester_2\dl\augmentation_engine (0.0.1)
    Requirement already satisfied: sortedcontainers in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (2.4.0)
    Requirement already satisfied: opencv_python in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (4.5.3.56)
    Requirement already satisfied: torchvision in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (0.10.0)
    Requirement already satisfied: pillow in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (8.3.2)
    Requirement already satisfied: numpy>=1.17.3 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from opencv_python->augmentation_engine) (1.21.2)
    Requirement already satisfied: torch==1.9.0 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torchvision->augmentation_engine) (1.9.0)
    Requirement already satisfied: typing-extensions in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torch==1.9.0->torchvision->augmentation_engine) (3.10.0.2)
    Note: you may need to restart the kernel to use updated packages.
### Import Required Libraries 
```python
import os
from torchvision import transforms
import matplotlib.pyplot as plt
from filament_augmentation.loader.filament_dataloader import FilamentDataLoader
from filament_augmentation.generator.filament_dataset import FilamentDataset
from filament_augmentation.metadata.filament_metadata import FilamentMetadata
```
**To find out the number of left, right and unidentified chiralities for an interval of time.**
- The code snippet below gives the *chirality distribution*, i.e., the distribution of left, right and unidentified chiralities for an interval of time from "2015-08-01 17:36:15" to "2015-08-09 18:15:17".
- Here the petdata has big bear space observatory(BBSO) full disk solar images from (01-09) aug 2015.
- The format for start and end time should be YYYY-MM-DD HH:MM:SS.
- The ann_file or annotation file is a H-alpha based manually labelled filaments in a json file comes with petdata.
```python
__file__ = 'augmentation_process.ipynb'
bbso_json = os.path.abspath(
        os.path.join(os.path.dirname(__file__), 'petdata', 'bbso_json_data','2015_chir_data.json'))
filamentInfo = FilamentMetadata(ann_file = bbso_json, start_time = '2015-08-01 00:00:15',
                                    end_time = '2015-08-30 23:59:59')
filamentInfo.get_chirality_distribution()
```
    (22, 30, 186)
- In order to generate extra filaments for left, right or unidentified chirality by either balancing the data or getting them in required ratios to train them using an ML algorithm. A filament dataset class should be initialized which is quite similar to that of pytorch dataset class.
- The transform list should be list of torchvision [transformations](https://pytorch.org/vision/0.8/transforms.html) 
- Filament ratio is tuple variable that takes (L,R,U).
### Initializing Filament dataset 
To initialize filament dataset class follow parameters are required:
- bbso_path - BBSO full disk H-alpha solar images comes with petdata, path of the folder.
- ann_file - a H-alpha based manually labelled filaments in a json file comes with petdata.
- The format for start and end time should be YYYY-MM-DD HH:MM:SS.
```python
bbso_path = os.path.abspath(os.path.join(os.path.dirname(__file__), 'petdata', '2015'))
dataset = FilamentDataset(bbso_path = bbso_path, ann_file = bbso_json, 
                          start_time = "2015-08-01 17:36:15", end_time = "2015-08-09 17:36:15")
```
    loading annotations into memory...
    Done (t=0.07s)
    creating index...
    index created!
### Setup transformations for data augmentation
The transformations function can be refered from [torchvision transforms](https://pytorch.org/vision/0.8/transforms.html)
- Here transforms variable should have list of torchvision transforms functions as shown below: 
```python
transforms1 = [
    transforms.ColorJitter(brightness=(0.25,1.25), contrast=(0.25,2.00), saturation=(0.25,2.25)),
    transforms.RandomRotation(15,expand=False,fill=110)
]
```
### Initializing data loader
- dataset = object of filament dataset class.
- batch_size = number of filaments to be generated per batch.
- filament_ratio = tuple of three values, i.e., ratios of left, right and unidentified chirality to be generated in each batch.
- n_batchs = number of batchs.
- transforms = list of torchvision transformations functions
- image_dim = image dimensions if image dimension is -1 then image will not be resize, i.e., output is original image size.
```python
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1),n_batchs = 10, 
                                 transforms = transforms1, image_dim = 224)
```
#### How to generate 3 filament images for every batch with ratio of left as 1, right chirality as 1 and unidentified as 1 for 10 batches with original image dimension and display the images?
```python
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1),
                                 n_batchs = 10, transforms = transforms1, image_dim = -1)
```
#### Batch -1 augmented filament images and their following labels (1=R, 0= U, -1=L)
```python
for original_imgs, transformed_imgs, labels in data_loader:
    for org_img, img, label in zip(original_imgs ,transformed_imgs, labels):
        print("Original image")
        plt.imshow(org_img, cmap='gray')
        plt.show()
        print("Transformed image")
        plt.imshow(img, cmap='gray')
        plt.show()
        print("Label",label)
    break
```
    Original image
![png](document_images/output_18_1.png)
    Transformed image
![png](document_images/output_18_3.png)
    Label 0
    Original image
![png](document_images/output_18_5.png)
    Transformed image
![png](document_images/output_18_7.png)
    Label 1
    Original image
![png](document_images/output_18_9.png)
    Transformed image
![png](document_images/output_18_11.png)
    Label -1
#### How to generate 12  filament images for every batch with ratio of left as 2, right chirality as 3  and unidentified as 1 for 5 batches with image dimension of 224x224 ?
```python
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 12 , filament_ratio = (2, 3, 1),
                                 n_batchs = 5, transforms = transforms1, image_dim = 224)
```
```python
for _, imgs, labels in data_loader:
    print("size of images ",imgs.shape)
    print("labels for each batch ",labels)
```
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[-1],
            [-1],
            [ 1],
            [-1],
            [ 0],
            [ 1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [ 0],
            [ 1]])
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[ 0],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [-1],
            [ 1],
            [ 1],
            [ 0],
            [-1],
            [ 1],
            [ 1]])
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[ 1],
            [ 1],
            [ 1],
            [ 0],
            [-1],
            [ 1],
            [-1],
            [ 0],
            [-1],
            [ 1],
            [-1],
            [ 1]])
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[-1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [ 0],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [ 1],
            [ 0]])
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[ 1],
            [ 1],
            [-1],
            [ 1],
            [-1],
            [ 0],
            [ 1],
            [ 0],
            [ 1],
            [-1],
            [-1],
            [ 1]])
#### How to generate 10 filament images for every batch only for left and right chirality for 5 batches with image dimension of 224x224 ?
- In order to remove one type of chiraity, filament ratio, i.e., tuple(L, R, U):   
    - if L=0 that means left chirality is eliminated. Similarly, this applies to other types as well.
```python
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 10 , filament_ratio = (1, 1, 0),
                                 n_batchs = 5, transforms = transforms1, image_dim = 224)
```
```python
for _, imgs, labels in data_loader:
    print("size of images ",imgs.shape)
    print("labels for each batch ",labels)
```
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[-1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [-1],
            [ 1],
            [-1],
            [-1],
            [ 1]])
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[ 1],
            [-1],
            [-1],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [-1]])
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[ 1],
            [ 1],
            [ 1],
            [ 1],
            [-1],
            [ 1],
            [-1],
            [-1],
            [-1],
            [-1]])
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[ 1],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [-1],
            [ 1]])
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[-1],
            [-1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [-1],
            [ 1],
            [-1],
            [ 1]])

%package -n python3-augmentation-engine
Summary:	Solar Filaments data augmentation demo package
Provides:	python-augmentation-engine
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-augmentation-engine
```python
pip install augmentation_engine
```
    Requirement already satisfied: augmentation_engine in d:\gsu_assignments\semester_2\dl\augmentation_engine (0.0.1)
    Requirement already satisfied: sortedcontainers in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (2.4.0)
    Requirement already satisfied: opencv_python in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (4.5.3.56)
    Requirement already satisfied: torchvision in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (0.10.0)
    Requirement already satisfied: pillow in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (8.3.2)
    Requirement already satisfied: numpy>=1.17.3 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from opencv_python->augmentation_engine) (1.21.2)
    Requirement already satisfied: torch==1.9.0 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torchvision->augmentation_engine) (1.9.0)
    Requirement already satisfied: typing-extensions in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torch==1.9.0->torchvision->augmentation_engine) (3.10.0.2)
    Note: you may need to restart the kernel to use updated packages.
### Import Required Libraries 
```python
import os
from torchvision import transforms
import matplotlib.pyplot as plt
from filament_augmentation.loader.filament_dataloader import FilamentDataLoader
from filament_augmentation.generator.filament_dataset import FilamentDataset
from filament_augmentation.metadata.filament_metadata import FilamentMetadata
```
**To find out the number of left, right and unidentified chiralities for an interval of time.**
- The code snippet below gives the *chirality distribution*, i.e., the distribution of left, right and unidentified chiralities for an interval of time from "2015-08-01 17:36:15" to "2015-08-09 18:15:17".
- Here the petdata has big bear space observatory(BBSO) full disk solar images from (01-09) aug 2015.
- The format for start and end time should be YYYY-MM-DD HH:MM:SS.
- The ann_file or annotation file is a H-alpha based manually labelled filaments in a json file comes with petdata.
```python
__file__ = 'augmentation_process.ipynb'
bbso_json = os.path.abspath(
        os.path.join(os.path.dirname(__file__), 'petdata', 'bbso_json_data','2015_chir_data.json'))
filamentInfo = FilamentMetadata(ann_file = bbso_json, start_time = '2015-08-01 00:00:15',
                                    end_time = '2015-08-30 23:59:59')
filamentInfo.get_chirality_distribution()
```
    (22, 30, 186)
- In order to generate extra filaments for left, right or unidentified chirality by either balancing the data or getting them in required ratios to train them using an ML algorithm. A filament dataset class should be initialized which is quite similar to that of pytorch dataset class.
- The transform list should be list of torchvision [transformations](https://pytorch.org/vision/0.8/transforms.html) 
- Filament ratio is tuple variable that takes (L,R,U).
### Initializing Filament dataset 
To initialize filament dataset class follow parameters are required:
- bbso_path - BBSO full disk H-alpha solar images comes with petdata, path of the folder.
- ann_file - a H-alpha based manually labelled filaments in a json file comes with petdata.
- The format for start and end time should be YYYY-MM-DD HH:MM:SS.
```python
bbso_path = os.path.abspath(os.path.join(os.path.dirname(__file__), 'petdata', '2015'))
dataset = FilamentDataset(bbso_path = bbso_path, ann_file = bbso_json, 
                          start_time = "2015-08-01 17:36:15", end_time = "2015-08-09 17:36:15")
```
    loading annotations into memory...
    Done (t=0.07s)
    creating index...
    index created!
### Setup transformations for data augmentation
The transformations function can be refered from [torchvision transforms](https://pytorch.org/vision/0.8/transforms.html)
- Here transforms variable should have list of torchvision transforms functions as shown below: 
```python
transforms1 = [
    transforms.ColorJitter(brightness=(0.25,1.25), contrast=(0.25,2.00), saturation=(0.25,2.25)),
    transforms.RandomRotation(15,expand=False,fill=110)
]
```
### Initializing data loader
- dataset = object of filament dataset class.
- batch_size = number of filaments to be generated per batch.
- filament_ratio = tuple of three values, i.e., ratios of left, right and unidentified chirality to be generated in each batch.
- n_batchs = number of batchs.
- transforms = list of torchvision transformations functions
- image_dim = image dimensions if image dimension is -1 then image will not be resize, i.e., output is original image size.
```python
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1),n_batchs = 10, 
                                 transforms = transforms1, image_dim = 224)
```
#### How to generate 3 filament images for every batch with ratio of left as 1, right chirality as 1 and unidentified as 1 for 10 batches with original image dimension and display the images?
```python
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1),
                                 n_batchs = 10, transforms = transforms1, image_dim = -1)
```
#### Batch -1 augmented filament images and their following labels (1=R, 0= U, -1=L)
```python
for original_imgs, transformed_imgs, labels in data_loader:
    for org_img, img, label in zip(original_imgs ,transformed_imgs, labels):
        print("Original image")
        plt.imshow(org_img, cmap='gray')
        plt.show()
        print("Transformed image")
        plt.imshow(img, cmap='gray')
        plt.show()
        print("Label",label)
    break
```
    Original image
![png](document_images/output_18_1.png)
    Transformed image
![png](document_images/output_18_3.png)
    Label 0
    Original image
![png](document_images/output_18_5.png)
    Transformed image
![png](document_images/output_18_7.png)
    Label 1
    Original image
![png](document_images/output_18_9.png)
    Transformed image
![png](document_images/output_18_11.png)
    Label -1
#### How to generate 12  filament images for every batch with ratio of left as 2, right chirality as 3  and unidentified as 1 for 5 batches with image dimension of 224x224 ?
```python
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 12 , filament_ratio = (2, 3, 1),
                                 n_batchs = 5, transforms = transforms1, image_dim = 224)
```
```python
for _, imgs, labels in data_loader:
    print("size of images ",imgs.shape)
    print("labels for each batch ",labels)
```
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[-1],
            [-1],
            [ 1],
            [-1],
            [ 0],
            [ 1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [ 0],
            [ 1]])
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[ 0],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [-1],
            [ 1],
            [ 1],
            [ 0],
            [-1],
            [ 1],
            [ 1]])
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[ 1],
            [ 1],
            [ 1],
            [ 0],
            [-1],
            [ 1],
            [-1],
            [ 0],
            [-1],
            [ 1],
            [-1],
            [ 1]])
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[-1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [ 0],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [ 1],
            [ 0]])
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[ 1],
            [ 1],
            [-1],
            [ 1],
            [-1],
            [ 0],
            [ 1],
            [ 0],
            [ 1],
            [-1],
            [-1],
            [ 1]])
#### How to generate 10 filament images for every batch only for left and right chirality for 5 batches with image dimension of 224x224 ?
- In order to remove one type of chiraity, filament ratio, i.e., tuple(L, R, U):   
    - if L=0 that means left chirality is eliminated. Similarly, this applies to other types as well.
```python
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 10 , filament_ratio = (1, 1, 0),
                                 n_batchs = 5, transforms = transforms1, image_dim = 224)
```
```python
for _, imgs, labels in data_loader:
    print("size of images ",imgs.shape)
    print("labels for each batch ",labels)
```
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[-1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [-1],
            [ 1],
            [-1],
            [-1],
            [ 1]])
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[ 1],
            [-1],
            [-1],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [-1]])
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[ 1],
            [ 1],
            [ 1],
            [ 1],
            [-1],
            [ 1],
            [-1],
            [-1],
            [-1],
            [-1]])
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[ 1],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [-1],
            [ 1]])
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[-1],
            [-1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [-1],
            [ 1],
            [-1],
            [ 1]])

%package help
Summary:	Development documents and examples for augmentation-engine
Provides:	python3-augmentation-engine-doc
%description help
```python
pip install augmentation_engine
```
    Requirement already satisfied: augmentation_engine in d:\gsu_assignments\semester_2\dl\augmentation_engine (0.0.1)
    Requirement already satisfied: sortedcontainers in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (2.4.0)
    Requirement already satisfied: opencv_python in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (4.5.3.56)
    Requirement already satisfied: torchvision in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (0.10.0)
    Requirement already satisfied: pillow in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (8.3.2)
    Requirement already satisfied: numpy>=1.17.3 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from opencv_python->augmentation_engine) (1.21.2)
    Requirement already satisfied: torch==1.9.0 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torchvision->augmentation_engine) (1.9.0)
    Requirement already satisfied: typing-extensions in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torch==1.9.0->torchvision->augmentation_engine) (3.10.0.2)
    Note: you may need to restart the kernel to use updated packages.
### Import Required Libraries 
```python
import os
from torchvision import transforms
import matplotlib.pyplot as plt
from filament_augmentation.loader.filament_dataloader import FilamentDataLoader
from filament_augmentation.generator.filament_dataset import FilamentDataset
from filament_augmentation.metadata.filament_metadata import FilamentMetadata
```
**To find out the number of left, right and unidentified chiralities for an interval of time.**
- The code snippet below gives the *chirality distribution*, i.e., the distribution of left, right and unidentified chiralities for an interval of time from "2015-08-01 17:36:15" to "2015-08-09 18:15:17".
- Here the petdata has big bear space observatory(BBSO) full disk solar images from (01-09) aug 2015.
- The format for start and end time should be YYYY-MM-DD HH:MM:SS.
- The ann_file or annotation file is a H-alpha based manually labelled filaments in a json file comes with petdata.
```python
__file__ = 'augmentation_process.ipynb'
bbso_json = os.path.abspath(
        os.path.join(os.path.dirname(__file__), 'petdata', 'bbso_json_data','2015_chir_data.json'))
filamentInfo = FilamentMetadata(ann_file = bbso_json, start_time = '2015-08-01 00:00:15',
                                    end_time = '2015-08-30 23:59:59')
filamentInfo.get_chirality_distribution()
```
    (22, 30, 186)
- In order to generate extra filaments for left, right or unidentified chirality by either balancing the data or getting them in required ratios to train them using an ML algorithm. A filament dataset class should be initialized which is quite similar to that of pytorch dataset class.
- The transform list should be list of torchvision [transformations](https://pytorch.org/vision/0.8/transforms.html) 
- Filament ratio is tuple variable that takes (L,R,U).
### Initializing Filament dataset 
To initialize filament dataset class follow parameters are required:
- bbso_path - BBSO full disk H-alpha solar images comes with petdata, path of the folder.
- ann_file - a H-alpha based manually labelled filaments in a json file comes with petdata.
- The format for start and end time should be YYYY-MM-DD HH:MM:SS.
```python
bbso_path = os.path.abspath(os.path.join(os.path.dirname(__file__), 'petdata', '2015'))
dataset = FilamentDataset(bbso_path = bbso_path, ann_file = bbso_json, 
                          start_time = "2015-08-01 17:36:15", end_time = "2015-08-09 17:36:15")
```
    loading annotations into memory...
    Done (t=0.07s)
    creating index...
    index created!
### Setup transformations for data augmentation
The transformations function can be refered from [torchvision transforms](https://pytorch.org/vision/0.8/transforms.html)
- Here transforms variable should have list of torchvision transforms functions as shown below: 
```python
transforms1 = [
    transforms.ColorJitter(brightness=(0.25,1.25), contrast=(0.25,2.00), saturation=(0.25,2.25)),
    transforms.RandomRotation(15,expand=False,fill=110)
]
```
### Initializing data loader
- dataset = object of filament dataset class.
- batch_size = number of filaments to be generated per batch.
- filament_ratio = tuple of three values, i.e., ratios of left, right and unidentified chirality to be generated in each batch.
- n_batchs = number of batchs.
- transforms = list of torchvision transformations functions
- image_dim = image dimensions if image dimension is -1 then image will not be resize, i.e., output is original image size.
```python
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1),n_batchs = 10, 
                                 transforms = transforms1, image_dim = 224)
```
#### How to generate 3 filament images for every batch with ratio of left as 1, right chirality as 1 and unidentified as 1 for 10 batches with original image dimension and display the images?
```python
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1),
                                 n_batchs = 10, transforms = transforms1, image_dim = -1)
```
#### Batch -1 augmented filament images and their following labels (1=R, 0= U, -1=L)
```python
for original_imgs, transformed_imgs, labels in data_loader:
    for org_img, img, label in zip(original_imgs ,transformed_imgs, labels):
        print("Original image")
        plt.imshow(org_img, cmap='gray')
        plt.show()
        print("Transformed image")
        plt.imshow(img, cmap='gray')
        plt.show()
        print("Label",label)
    break
```
    Original image
![png](document_images/output_18_1.png)
    Transformed image
![png](document_images/output_18_3.png)
    Label 0
    Original image
![png](document_images/output_18_5.png)
    Transformed image
![png](document_images/output_18_7.png)
    Label 1
    Original image
![png](document_images/output_18_9.png)
    Transformed image
![png](document_images/output_18_11.png)
    Label -1
#### How to generate 12  filament images for every batch with ratio of left as 2, right chirality as 3  and unidentified as 1 for 5 batches with image dimension of 224x224 ?
```python
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 12 , filament_ratio = (2, 3, 1),
                                 n_batchs = 5, transforms = transforms1, image_dim = 224)
```
```python
for _, imgs, labels in data_loader:
    print("size of images ",imgs.shape)
    print("labels for each batch ",labels)
```
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[-1],
            [-1],
            [ 1],
            [-1],
            [ 0],
            [ 1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [ 0],
            [ 1]])
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[ 0],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [-1],
            [ 1],
            [ 1],
            [ 0],
            [-1],
            [ 1],
            [ 1]])
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[ 1],
            [ 1],
            [ 1],
            [ 0],
            [-1],
            [ 1],
            [-1],
            [ 0],
            [-1],
            [ 1],
            [-1],
            [ 1]])
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[-1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [ 0],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [ 1],
            [ 0]])
    size of images  torch.Size([12, 224, 224])
    labels for each batch  tensor([[ 1],
            [ 1],
            [-1],
            [ 1],
            [-1],
            [ 0],
            [ 1],
            [ 0],
            [ 1],
            [-1],
            [-1],
            [ 1]])
#### How to generate 10 filament images for every batch only for left and right chirality for 5 batches with image dimension of 224x224 ?
- In order to remove one type of chiraity, filament ratio, i.e., tuple(L, R, U):   
    - if L=0 that means left chirality is eliminated. Similarly, this applies to other types as well.
```python
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 10 , filament_ratio = (1, 1, 0),
                                 n_batchs = 5, transforms = transforms1, image_dim = 224)
```
```python
for _, imgs, labels in data_loader:
    print("size of images ",imgs.shape)
    print("labels for each batch ",labels)
```
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[-1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [-1],
            [ 1],
            [-1],
            [-1],
            [ 1]])
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[ 1],
            [-1],
            [-1],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [-1]])
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[ 1],
            [ 1],
            [ 1],
            [ 1],
            [-1],
            [ 1],
            [-1],
            [-1],
            [-1],
            [-1]])
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[ 1],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [-1],
            [-1],
            [ 1],
            [-1],
            [ 1]])
    size of images  torch.Size([10, 224, 224])
    labels for each batch  tensor([[-1],
            [-1],
            [-1],
            [ 1],
            [ 1],
            [ 1],
            [-1],
            [ 1],
            [-1],
            [ 1]])

%prep
%autosetup -n augmentation_engine-0.1.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-augmentation-engine -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.2-1
- Package Spec generated