1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
%global _empty_manifest_terminate_build 0
Name: python-automl-alex
Version: 2023.3.11
Release: 1
Summary: State-of-the art Automated Machine Learning python library for Tabular Data
License: MIT
URL: https://pypi.org/project/automl-alex/
Source0: https://mirrors.aliyun.com/pypi/web/packages/4e/be/345d3d0a44e7ee8e9432c049a1b7663ecf84923f4babc4465b37d5a0f24c/automl-alex-2023.3.11.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-scikit-learn
Requires: python3-seaborn
Requires: python3-lightgbm
Requires: python3-catboost
Requires: python3-xgboost
Requires: python3-tqdm
Requires: python3-optuna
Requires: python3-category-encoders
Requires: python3-optuna-dashboard
Requires: python3-loguru
Requires: python3-psutil
Requires: python3-nbformat
%description
<p align="center"> State-of-the art Automated Machine Learning python library for Tabular Data</p>
## Works with Tasks:
- [x] Binary Classification
- [x] Regression
- [ ] Multiclass Classification (in progress...)
### Benchmark Results
<img width=800 src="https://github.com/Alex-Lekov/AutoML-Benchmark/blob/master/img/Total_SUM.png" alt="bench">
The bigger, the better
From [AutoML-Benchmark](https://github.com/Alex-Lekov/AutoML-Benchmark/)
### Scheme
<img width=800 src="https://github.com/Alex-Lekov/AutoML_Alex/blob/develop/examples/img/shema.png" alt="scheme">
# Features
- Automated Data Clean (Auto Clean)
- Automated **Feature Engineering** (Auto FE)
- Smart Hyperparameter Optimization (HPO)
- Feature Generation
- Feature Selection
- Models Selection
- Cross Validation
- Optimization Timelimit and EarlyStoping
- Save and Load (Predict new data)
# Installation
```python
pip install automl-alex
```
# Docs
[DocPage](https://alex-lekov.github.io/AutoML_Alex/)
# 🚀 Examples
Classifier:
```python
from automl_alex import AutoMLClassifier
model = AutoMLClassifier()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
```
Regression:
```python
from automl_alex import AutoMLRegressor
model = AutoMLRegressor()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
```
DataPrepare:
```python
from automl_alex import DataPrepare
de = DataPrepare()
X_train = de.fit_transform(X_train)
X_test = de.transform(X_test)
```
Simple Models Wrapper:
```python
from automl_alex import LightGBMClassifier
model = LightGBMClassifier()
model.fit(X_train, y_train)
predicts = model.predict_proba(X_test)
model.opt(X_train, y_train,
timeout=600, # optimization time in seconds,
)
predicts = model.predict_proba(X_test)
```
More examples in the folder ./examples:
- [01_Quick_Start.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb)
- [02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb)
- [03_Models.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb)
- [04_ModelsReview.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb)
- [05_BestSingleModel.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb)
- [Production Docker template](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/prod_sample)
# What's inside
It integrates many popular frameworks:
- scikit-learn
- XGBoost
- LightGBM
- CatBoost
- Optuna
- ...
# Works with Features
- [x] Categorical Features
- [x] Numerical Features
- [x] Binary Features
- [ ] Text
- [ ] Datetime
- [ ] Timeseries
- [ ] Image
# Note
- **With a large dataset, a lot of memory is required!**
Library creates many new features. If you have a large dataset with a large number of features (more than 100), you may need a lot of memory.
# Realtime Dashboard
Works with [optuna-dashboard](https://github.com/optuna/optuna-dashboard)
<img width=800 src="https://github.com/Alex-Lekov/AutoML_Alex/blob/develop/examples/img/dashboard.gif" alt="Dashboard">
Run
```console
$ optuna-dashboard sqlite:///db.sqlite3
```
# Road Map
- [x] Feature Generation
- [x] Save/Load and Predict on New Samples
- [x] Advanced Logging
- [x] Add opt Pruners
- [ ] Docs Site
- [ ] DL Encoders
- [ ] Add More libs (NNs)
- [ ] Multiclass Classification
- [ ] Build pipelines
# Contact
[Telegram Group](https://t.me/automlalex)
%package -n python3-automl-alex
Summary: State-of-the art Automated Machine Learning python library for Tabular Data
Provides: python-automl-alex
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-automl-alex
<p align="center"> State-of-the art Automated Machine Learning python library for Tabular Data</p>
## Works with Tasks:
- [x] Binary Classification
- [x] Regression
- [ ] Multiclass Classification (in progress...)
### Benchmark Results
<img width=800 src="https://github.com/Alex-Lekov/AutoML-Benchmark/blob/master/img/Total_SUM.png" alt="bench">
The bigger, the better
From [AutoML-Benchmark](https://github.com/Alex-Lekov/AutoML-Benchmark/)
### Scheme
<img width=800 src="https://github.com/Alex-Lekov/AutoML_Alex/blob/develop/examples/img/shema.png" alt="scheme">
# Features
- Automated Data Clean (Auto Clean)
- Automated **Feature Engineering** (Auto FE)
- Smart Hyperparameter Optimization (HPO)
- Feature Generation
- Feature Selection
- Models Selection
- Cross Validation
- Optimization Timelimit and EarlyStoping
- Save and Load (Predict new data)
# Installation
```python
pip install automl-alex
```
# Docs
[DocPage](https://alex-lekov.github.io/AutoML_Alex/)
# 🚀 Examples
Classifier:
```python
from automl_alex import AutoMLClassifier
model = AutoMLClassifier()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
```
Regression:
```python
from automl_alex import AutoMLRegressor
model = AutoMLRegressor()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
```
DataPrepare:
```python
from automl_alex import DataPrepare
de = DataPrepare()
X_train = de.fit_transform(X_train)
X_test = de.transform(X_test)
```
Simple Models Wrapper:
```python
from automl_alex import LightGBMClassifier
model = LightGBMClassifier()
model.fit(X_train, y_train)
predicts = model.predict_proba(X_test)
model.opt(X_train, y_train,
timeout=600, # optimization time in seconds,
)
predicts = model.predict_proba(X_test)
```
More examples in the folder ./examples:
- [01_Quick_Start.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb)
- [02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb)
- [03_Models.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb)
- [04_ModelsReview.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb)
- [05_BestSingleModel.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb)
- [Production Docker template](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/prod_sample)
# What's inside
It integrates many popular frameworks:
- scikit-learn
- XGBoost
- LightGBM
- CatBoost
- Optuna
- ...
# Works with Features
- [x] Categorical Features
- [x] Numerical Features
- [x] Binary Features
- [ ] Text
- [ ] Datetime
- [ ] Timeseries
- [ ] Image
# Note
- **With a large dataset, a lot of memory is required!**
Library creates many new features. If you have a large dataset with a large number of features (more than 100), you may need a lot of memory.
# Realtime Dashboard
Works with [optuna-dashboard](https://github.com/optuna/optuna-dashboard)
<img width=800 src="https://github.com/Alex-Lekov/AutoML_Alex/blob/develop/examples/img/dashboard.gif" alt="Dashboard">
Run
```console
$ optuna-dashboard sqlite:///db.sqlite3
```
# Road Map
- [x] Feature Generation
- [x] Save/Load and Predict on New Samples
- [x] Advanced Logging
- [x] Add opt Pruners
- [ ] Docs Site
- [ ] DL Encoders
- [ ] Add More libs (NNs)
- [ ] Multiclass Classification
- [ ] Build pipelines
# Contact
[Telegram Group](https://t.me/automlalex)
%package help
Summary: Development documents and examples for automl-alex
Provides: python3-automl-alex-doc
%description help
<p align="center"> State-of-the art Automated Machine Learning python library for Tabular Data</p>
## Works with Tasks:
- [x] Binary Classification
- [x] Regression
- [ ] Multiclass Classification (in progress...)
### Benchmark Results
<img width=800 src="https://github.com/Alex-Lekov/AutoML-Benchmark/blob/master/img/Total_SUM.png" alt="bench">
The bigger, the better
From [AutoML-Benchmark](https://github.com/Alex-Lekov/AutoML-Benchmark/)
### Scheme
<img width=800 src="https://github.com/Alex-Lekov/AutoML_Alex/blob/develop/examples/img/shema.png" alt="scheme">
# Features
- Automated Data Clean (Auto Clean)
- Automated **Feature Engineering** (Auto FE)
- Smart Hyperparameter Optimization (HPO)
- Feature Generation
- Feature Selection
- Models Selection
- Cross Validation
- Optimization Timelimit and EarlyStoping
- Save and Load (Predict new data)
# Installation
```python
pip install automl-alex
```
# Docs
[DocPage](https://alex-lekov.github.io/AutoML_Alex/)
# 🚀 Examples
Classifier:
```python
from automl_alex import AutoMLClassifier
model = AutoMLClassifier()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
```
Regression:
```python
from automl_alex import AutoMLRegressor
model = AutoMLRegressor()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
```
DataPrepare:
```python
from automl_alex import DataPrepare
de = DataPrepare()
X_train = de.fit_transform(X_train)
X_test = de.transform(X_test)
```
Simple Models Wrapper:
```python
from automl_alex import LightGBMClassifier
model = LightGBMClassifier()
model.fit(X_train, y_train)
predicts = model.predict_proba(X_test)
model.opt(X_train, y_train,
timeout=600, # optimization time in seconds,
)
predicts = model.predict_proba(X_test)
```
More examples in the folder ./examples:
- [01_Quick_Start.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb)
- [02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb)
- [03_Models.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb)
- [04_ModelsReview.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb)
- [05_BestSingleModel.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb) [](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb)
- [Production Docker template](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/prod_sample)
# What's inside
It integrates many popular frameworks:
- scikit-learn
- XGBoost
- LightGBM
- CatBoost
- Optuna
- ...
# Works with Features
- [x] Categorical Features
- [x] Numerical Features
- [x] Binary Features
- [ ] Text
- [ ] Datetime
- [ ] Timeseries
- [ ] Image
# Note
- **With a large dataset, a lot of memory is required!**
Library creates many new features. If you have a large dataset with a large number of features (more than 100), you may need a lot of memory.
# Realtime Dashboard
Works with [optuna-dashboard](https://github.com/optuna/optuna-dashboard)
<img width=800 src="https://github.com/Alex-Lekov/AutoML_Alex/blob/develop/examples/img/dashboard.gif" alt="Dashboard">
Run
```console
$ optuna-dashboard sqlite:///db.sqlite3
```
# Road Map
- [x] Feature Generation
- [x] Save/Load and Predict on New Samples
- [x] Advanced Logging
- [x] Add opt Pruners
- [ ] Docs Site
- [ ] DL Encoders
- [ ] Add More libs (NNs)
- [ ] Multiclass Classification
- [ ] Build pipelines
# Contact
[Telegram Group](https://t.me/automlalex)
%prep
%autosetup -n automl-alex-2023.3.11
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-automl-alex -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 2023.3.11-1
- Package Spec generated
|