1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
|
%global _empty_manifest_terminate_build 0
Name: python-autoray
Version: 0.6.3
Release: 1
Summary: Write backend agnostic numeric code compatible with any numpy-ish array library.
License: Apache
URL: http://github.com/jcmgray/autoray
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d0/c2/72d32bc18cc51f1aae862530ca9817387fdd2ff9df3110a729b445c3fb86/autoray-0.6.3.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-coverage
Requires: python3-pytest
Requires: python3-pytest-cov
%description
<p align="left"><img src="https://github.com/jcmgray/autoray/blob/master/docs/images/autoray-header.png?raw=true" alt="autoray" width="500px"></p>
A lightweight python AUTOmatic-arRAY library. Write numeric code that works for:
* [numpy](https://github.com/numpy/numpy)
* [pytorch](https://pytorch.org/)
* [jax](https://github.com/google/jax)
* [cupy](https://github.com/cupy/cupy)
* [dask](https://github.com/dask/dask)
* [autograd](https://github.com/HIPS/autograd)
* [tensorflow](https://github.com/tensorflow/tensorflow)
* [mars](https://github.com/mars-project/mars)
* ... and indeed **any** library that provides a numpy-*ish* api.
[](https://github.com/jcmgray/autoray/actions/workflows/tests.yml) [](https://codecov.io/gh/jcmgray/autoray) [](https://www.codacy.com/gh/jcmgray/autoray/dashboard?utm_source=github.com&utm_medium=referral&utm_content=jcmgray/autoray&utm_campaign=Badge_Grade) [](https://pypi.org/project/autoray/) [](https://anaconda.org/conda-forge/autoray)
As an example consider this function that orthogonalizes a matrix using the modified [Gram-Schmidt](https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process) algorithm:
```python
from autoray import do
def modified_gram_schmidt(X):
# n.b. performance-wise this particular function is *not*
# a good candidate for a pure python implementation
Q = []
for j in range(0, X.shape[0]):
q = X[j, :]
for i in range(0, j):
rij = do('tensordot', do('conj', Q[i]), q, 1)
q = q - rij * Q[i]
rjj = do('linalg.norm', q, 2)
Q.append(q / rjj)
return do('stack', Q, axis=0)
```
Which is now compatible with **all** of the above mentioned libraries! Abstracting out the array interface also allows the following functionality:
* *swap custom versions of functions for specific backends*
* *trace through computations lazily without actually running them*
* *automatically share intermediates and fold constants in computations*
* *compile functions with a unified interface for different backends*
... all implemented in a lightweight manner with an emphasis on minimizing overhead. Of course complete compatibility is not going to be possible for all functions, operations and libraries, but ``autoray`` hopefully makes the job much easier. Of the above, ``tensorflow`` has *quite* a different interface and ``pytorch`` probably the *most* different. Whilst for example not every function will work out-of-the-box for these two, ``autoray`` is also designed with the easy addition of new functions in mind (for example adding new translations is often a one-liner).
**Contents**
* [Basic Usage](#Basic-usage)
* [How does it work?](#how-does-it-work?)
* [Customizing functions](#Customizing-functions)
* [Lazy Computation](#Lazy-Computation)
* [Compilation](#Compilation)
* [Details](#Details)
* [Special Functions](#Special-Functions)
* [Deviations from `numpy`](#Deviations-from-numpy)
* [Installation](#Installation)
* [Contributing](#Contributing)
# Basic Usage
## How does it work?
``autoray`` works using essentially a single dispatch mechanism on the first argument for ``do``, or the ``like`` keyword argument if specified, fetching functions from the whichever module defined that supplied array. Additionally, it caches a few custom translations and lookups so as to handle libraries like ``tensorflow`` that don't exactly replicate the ``numpy`` api (for example ``sum`` gets translated to ``tensorflow.reduce_sum``). Due to the caching, each ``do`` call only adds 1 or 2 dict look-ups as overhead - much less than using ``functools.singledispatch`` for example.
Essentially you call your numpy-style array functions in one of four ways:
***1. Automatic backend:***
```python
do('sqrt', x)
```
Here the backend is inferred from ``x``. Usually dispatch happens on the first argument, but several functions (such as ``stack`` and ``einsum``) know to override this and look elsewhere.
***2. Backend 'like' another array:***
```python
do('random.normal', size=(2, 3, 4), like=x)
```
Here the backend is inferred from another array and can thus be implicitly propagated, even when functions take no array arguments.
***3. Explicit backend:***
```python
do('einsum', eq, x, y, like='customlib')
```
Here one simply supplies the desired function backend explicitly.
***4. Context manager***
```python
with backend_like('autoray.lazy'):
xy = do('tensordot', x, y, 1)
z = do('trace', xy)
```
Here you set a default backend for a whole block of code. This default overrides method 1. above but 2. and 3. still take precedence.
If you don't like the explicit ``do`` syntax, then you can import the fake ``numpy`` object as a **drop-in replacement** instead:
```python
from autoray import numpy as np
x = np.random.uniform(size=(2, 3, 4), like='tensorflow')
np.tensordot(x, x, [(2, 1), (2, 1)])
# <tf.Tensor 'Tensordot:0' shape=(2, 2) dtype=float32>
np.eye(3, like=x) # many functions obviously can't dispatch without the `like` keyword
# <tf.Tensor 'eye/MatrixDiag:0' shape=(3, 3) dtype=float32>
```
## Customizing functions
If the functions relevant for a particular array type are not defined in the
array's top level module, you can explicitly register the correct location with
``autoray.register_backend``:
```python
ar.register_backend(MyArrayType, 'mymod.mysubmod')
```
If you want to directly provide a missing or alternative implementation of some function for a particular backend you can swap one in with ``autoray.register_function``:
```python
def my_custom_torch_svd(x):
import torch
print('Hello SVD!')
u, s, v = torch.svd(x)
return u, s, v.T
ar.register_function('torch', 'linalg.svd', my_custom_torch_svd)
x = ar.do('random.uniform', size=(3, 4), like='torch')
ar.do('linalg.svd', x)
# Hello SVD!
# (tensor([[-0.5832, 0.6188, -0.5262],
# [-0.5787, -0.7711, -0.2655],
# [-0.5701, 0.1497, 0.8078]]),
# tensor([2.0336, 0.8518, 0.4572]),
# tensor([[-0.4568, -0.3166, -0.6835, -0.4732],
# [-0.5477, 0.2825, -0.2756, 0.7377],
# [ 0.2468, -0.8423, -0.0993, 0.4687]]))
```
If you want to make use of the existing function you can supply ``wrap=True`` in which case the custom function supplied should act like a decorator:
```python
def my_custom_sum_wrapper(old_fn):
def new_fn(*args, **kwargs):
print('Hello sum!')
return old_fn(*args **kwargs)
return new_fn
ar.register_function('torch', 'sum', my_custom_sum_wrapper, wrap=True)
ar.do('sum', x)
# Hello sum!
# tensor(5.4099)
```
Though be careful, if you call ``register_function`` again it will now wrap the *new* function!
Note you can combine ``register_backend`` and ``register_function`` to
dynamically define array types and functions from anywhere.
## Lazy Computation
Abstracting out the array interface also affords an opportunity to run any computations utilizing ``autoray.do`` completely lazily. ``autoray`` provides the ``lazy`` submodule and ``LazyArray`` class for this purpose:
```python
from autoray import lazy
# input array - can be anything autoray.do supports
x = do('random.normal', size=(5, 5), like='torch')
# convert it to a lazy 'computational node'
lx = lazy.array(x)
# supply this to our function
ly = modified_gram_schmidt(lx)
ly
# <LazyArray(fn=stack, shape=(5, 5), backend='torch')>
```
None of the functions have been called yet - simply the shape has been propagated through. ``ly`` represents the final ``stack`` call, and tracks which other ``LazyArray`` instances it needs to materialize before it can compute itself:
```python
ly.show()
# 0 stack[5, 5]
# 1 ├─truediv[5]
# 2 │ ├─getitem[5]
# 3 │ │ ╰─←[5, 5]
# 4 │ ╰─linalg_norm[]
# 5 │ ╰─ ... (getitem[5] from line 2)
# 5 ├─truediv[5]
# 6 │ ├─sub[5]
# 7 │ │ ├─getitem[5]
# 8 │ │ │ ╰─ ... (←[5, 5] from line 3)
# 8 │ │ ╰─mul[5]
# 9 │ │ ├─ ... (truediv[5] from line 1)
# 9 │ │ ╰─tensordot[]
# 10 │ │ ├─ ... (getitem[5] from line 7)
# 10 │ │ ╰─conj[5]
# 11 │ │ ╰─ ... (truediv[5] from line 1)
# 11 │ ╰─linalg_norm[]
# 12 │ ╰─ ... (sub[5] from line 6)
# 12 ├─truediv[5]
# 13 │ ├─sub[5]
# 14 │ │ ├─sub[5]
# 15 │ │ │ ├─getitem[5]
# 16 │ │ │ │ ╰─ ... (←[5, 5] from line 3)
# 16 │ │ │ ╰─mul[5]
# 17 │ │ │ ├─ ... (truediv[5] from line 1)
# 17 │ │ │ ╰─tensordot[]
# 18 │ │ │ ├─ ... (getitem[5] from line 15)
# ...
```
At this point one can perform various bits of introspection:
```python
# --> frequency of each function call
ly.history_fn_frequencies()
# {'stack': 1,
# 'truediv': 5,
# 'linalg_norm': 5,
# 'sub': 10,
# 'mul': 10,
# 'getitem': 5,
# 'None': 1,
# 'tensordot': 10,
# 'conj': 10}
# --> the largest array encountered
ly.history_max_size()
# 25
# --> traverse the unique computational nodes, e.g. to estimate FLOP cost
len([node for node in ly])
# 57
# --> traverse in topological/computational order
len([node for node in ly.ascend()])
# 57
# --> plot the full computation as a circuit
ly.plot()
```
<p align="left"><img src="docs/images/autoray-readme-pic-1.png" width="650px"></p>
Preview the memory footprint (in terms of number of array elements) throughout the computation:
```python
ly.plot_history_size_footprint()
```
<p align="left"><img src="docs/images/autoray-readme-pic-0.png" width="600px"></p>
You can also plot the computation as a `networkx` graph with automatic layout using `ly.plot_graph()`.
Finally, if we want to compute the actual value we call:
```python
ly.compute()
# tensor([[-0.4225, 0.1371, -0.2307, 0.5892, 0.6343],
# [ 0.4079, -0.5103, 0.5924, 0.4261, 0.2016],
# [ 0.2569, -0.5173, -0.4875, -0.4238, 0.4992],
# [-0.2778, -0.5870, -0.3928, 0.3645, -0.5396],
# [ 0.7155, 0.3297, -0.4515, 0.3986, -0.1291]])
```
Note that once a node is computed, it only stores the actual result and clears all references to other ``LazyArray`` instances.
**Sharing intermediates**
If the computation might involve repeated computations then you can call it in a ``shared_intermediates`` context:
```python
with lazy.shared_intermediates():
ly = modified_gram_schmidt(lx)
# --> a few nodes can be reused here (c.f. 57 previously)
len(tuple(ly))
# 51
```
this caches the computational nodes as they are created based on a hash of their input arguments (note this uses ``id`` for array like things, i.e. assumes they are immutable). Unlike eagerly caching function calls in real time, which might consume large amounts of memory, now when the computation runs (i.e. ``ly.compute()`` is called) data is only kept as long as its needed.
**Why not use e.g. ``dask``?**
There are many reasons to use [dask](https://dask.org/), but it incurs a pretty large overhead for big computational graphs with comparatively small operations. Calling and computing the ``modified_gram_schmidt`` function for a 100x100 matrix (20,102 computational nodes) with ``dask.array`` takes ~25sec whereas with ``lazy.array`` it takes ~0.25sec:
```python
import dask.array as da
%%time
dx = da.array(x)
dy = modified_gram_schmidt(dx)
y = dy.compute()
# CPU times: user 25.6 s, sys: 137 ms, total: 25.8 s
# Wall time: 25.5 s
%%time
lx = lazy.array(x)
ly = modified_gram_schmidt(lx)
y = ly.compute()
# CPU times: user 256 ms, sys: 0 ns, total: 256 ms
# Wall time: 255 ms
```
This is enabled by `autoray`'s very minimal implementation.
## Compilation
Various libraries provide tools for tracing numeric functions and turning the resulting computation into a more efficient, compiled function. Notably:
* [``jax.jit``](https://github.com/google/jax)
* [``tensorflow.function``](https://www.tensorflow.org/api_docs/python/tf/function)
* [``torch.jit.trace``](https://pytorch.org/docs/stable/jit.html)
``autoray`` is obviously very well suited to these since it just dispatches functions to whichever library is doing the tracing - functions written using autoray should be immediately compatible with all of them.
**The `autojit` wrapper**
Moreover, ``autoray`` also provides a *unified interface* for compiling functions so that the compilation backend can be easily switched or automatically identified:
```python
from autoray import autojit
mgs = autojit(modified_gram_schmidt)
```
Currently ``autojit`` supports functions with the signature ``fn(*args, **kwargs) -> array`` where both ``args`` and ``kwargs`` can be any nested combination of ``tuple``, ``list`` and ``dict`` objects containings arrays.
We can compare different compiled versions of this simply by changing the ``backend`` option:
```python
x = do("random.normal", size=(50, 50), like='numpy')
# first the uncompiled version
%%timeit
modified_gram_schmidt(x)
# 23.5 ms ± 241 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
# 'python' mode unravels computation into source then uses compile+exec
%%timeit
mgs(x) # backend='python'
# 17.8 ms ± 191 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
mgs(x, backend='torch')
# 11.9 ms ± 80.5 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
mgs(x, backend='tensorflow')
# 1.87 ms ± 441 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
# need to config jax to run on same footing
from jax.config import config
config.update("jax_enable_x64", True)
config.update('jax_platform_name', 'cpu')
%%timeit
mgs(x, backend='jax')
# 226 µs ± 14.8 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
do('linalg.qr', x, like='numpy')[0] # appriximately the 'C' version
# 156 µs ± 32.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```
Here you see *(with this very for-loop heavy function)*, that there are significant gains to be made for all the compilations options. Whilst ``jax`` for example achieves fantastic performance, it should be noted the compilation step takes a lot of time and scales badly (super-linearly) with the number of computational nodes.
# Details
## Special Functions
The main function is ``do``, but the following special (i.e. not in ``numpy``) functions are also implemented that may be useful:
* ``autoray.infer_backend`` - check what library is being inferred for a given array
* ``autoray.to_backend_dtype`` - convert a string specified dtype like ``'float32'`` to ``torch.float32`` for example
* ``autoray.get_dtype_name`` - convert a backend dtype back into the equivalent string specifier like ``'complex64'``
* ``autoray.astype`` - backend agnostic dtype conversion of arrays
* ``autoray.to_numpy`` - convert any array to a ``numpy.ndarray``
Here are all of those in action:
```python
import autoray as ar
backend = 'torch'
dtype = ar.to_backend_dtype('float64', like=backend)
dtype
# torch.float64
x = ar.do('random.normal', size=(4,), dtype=dtype, like=backend)
x
# tensor([ 0.0461, 0.3028, 0.1790, -0.1494], dtype=torch.float64)
ar.infer_backend(x)
# 'torch'
ar.get_dtype_name(x)
# 'float64'
x32 = ar.astype(x, 'float32')
ar.to_numpy(x32)
# array([ 0.04605161, 0.30280888, 0.17903718, -0.14936243], dtype=float32)
```
## Deviations from `numpy`
`autoray` doesn't have an API as such, since it is essentially just a fancy single dispatch mechanism. On the other hand, where translations *are* in place, they generally use the numpy API. So ``autoray.do('stack', arrays=pytorch_tensors, axis=0)`` gets automatically translated into ``torch.stack(tensors=pytorch_tensors, dims=0)`` and so forth.
Currently the one place this isn't true is ``autoray.do('linalg.svd', x)`` where instead ``full_matrices=False`` is used as the default since this generally makes more sense and many libraries don't even implement the other case. Autoray also dispatches ``'linalg.expm'`` for ``numpy`` arrays to ``scipy``, and may well do with other scipy-only functions at some point.
# Installation
You can install ``autoray`` via [conda-forge](https://conda-forge.org/) as well as with ``pip``. Alternatively, simply copy the monolithic ``autoray.py`` into your project internally (if dependencies aren't your thing) to provide ``do``. There are no dependencies.
**Alternatives**
* The ``__array_function__`` protocol has been [suggested](https://www.numpy.org/neps/nep-0018-array-function-protocol.html) and now implemented in ``numpy``. Hopefully this will eventually negate the need for ``autoray``. On the other hand, third party libraries themselves need to implement the interface, which has not been done, for example, in ``tensorflow`` yet.
* The [uarray](https://github.com/Quansight-Labs/uarray) project aims to develop a generic array interface but comes with the warning *"This is experimental and very early research code. Don't use this."*.
# Contributing
Pull requests such as extra translations are very welcome!
%package -n python3-autoray
Summary: Write backend agnostic numeric code compatible with any numpy-ish array library.
Provides: python-autoray
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-autoray
<p align="left"><img src="https://github.com/jcmgray/autoray/blob/master/docs/images/autoray-header.png?raw=true" alt="autoray" width="500px"></p>
A lightweight python AUTOmatic-arRAY library. Write numeric code that works for:
* [numpy](https://github.com/numpy/numpy)
* [pytorch](https://pytorch.org/)
* [jax](https://github.com/google/jax)
* [cupy](https://github.com/cupy/cupy)
* [dask](https://github.com/dask/dask)
* [autograd](https://github.com/HIPS/autograd)
* [tensorflow](https://github.com/tensorflow/tensorflow)
* [mars](https://github.com/mars-project/mars)
* ... and indeed **any** library that provides a numpy-*ish* api.
[](https://github.com/jcmgray/autoray/actions/workflows/tests.yml) [](https://codecov.io/gh/jcmgray/autoray) [](https://www.codacy.com/gh/jcmgray/autoray/dashboard?utm_source=github.com&utm_medium=referral&utm_content=jcmgray/autoray&utm_campaign=Badge_Grade) [](https://pypi.org/project/autoray/) [](https://anaconda.org/conda-forge/autoray)
As an example consider this function that orthogonalizes a matrix using the modified [Gram-Schmidt](https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process) algorithm:
```python
from autoray import do
def modified_gram_schmidt(X):
# n.b. performance-wise this particular function is *not*
# a good candidate for a pure python implementation
Q = []
for j in range(0, X.shape[0]):
q = X[j, :]
for i in range(0, j):
rij = do('tensordot', do('conj', Q[i]), q, 1)
q = q - rij * Q[i]
rjj = do('linalg.norm', q, 2)
Q.append(q / rjj)
return do('stack', Q, axis=0)
```
Which is now compatible with **all** of the above mentioned libraries! Abstracting out the array interface also allows the following functionality:
* *swap custom versions of functions for specific backends*
* *trace through computations lazily without actually running them*
* *automatically share intermediates and fold constants in computations*
* *compile functions with a unified interface for different backends*
... all implemented in a lightweight manner with an emphasis on minimizing overhead. Of course complete compatibility is not going to be possible for all functions, operations and libraries, but ``autoray`` hopefully makes the job much easier. Of the above, ``tensorflow`` has *quite* a different interface and ``pytorch`` probably the *most* different. Whilst for example not every function will work out-of-the-box for these two, ``autoray`` is also designed with the easy addition of new functions in mind (for example adding new translations is often a one-liner).
**Contents**
* [Basic Usage](#Basic-usage)
* [How does it work?](#how-does-it-work?)
* [Customizing functions](#Customizing-functions)
* [Lazy Computation](#Lazy-Computation)
* [Compilation](#Compilation)
* [Details](#Details)
* [Special Functions](#Special-Functions)
* [Deviations from `numpy`](#Deviations-from-numpy)
* [Installation](#Installation)
* [Contributing](#Contributing)
# Basic Usage
## How does it work?
``autoray`` works using essentially a single dispatch mechanism on the first argument for ``do``, or the ``like`` keyword argument if specified, fetching functions from the whichever module defined that supplied array. Additionally, it caches a few custom translations and lookups so as to handle libraries like ``tensorflow`` that don't exactly replicate the ``numpy`` api (for example ``sum`` gets translated to ``tensorflow.reduce_sum``). Due to the caching, each ``do`` call only adds 1 or 2 dict look-ups as overhead - much less than using ``functools.singledispatch`` for example.
Essentially you call your numpy-style array functions in one of four ways:
***1. Automatic backend:***
```python
do('sqrt', x)
```
Here the backend is inferred from ``x``. Usually dispatch happens on the first argument, but several functions (such as ``stack`` and ``einsum``) know to override this and look elsewhere.
***2. Backend 'like' another array:***
```python
do('random.normal', size=(2, 3, 4), like=x)
```
Here the backend is inferred from another array and can thus be implicitly propagated, even when functions take no array arguments.
***3. Explicit backend:***
```python
do('einsum', eq, x, y, like='customlib')
```
Here one simply supplies the desired function backend explicitly.
***4. Context manager***
```python
with backend_like('autoray.lazy'):
xy = do('tensordot', x, y, 1)
z = do('trace', xy)
```
Here you set a default backend for a whole block of code. This default overrides method 1. above but 2. and 3. still take precedence.
If you don't like the explicit ``do`` syntax, then you can import the fake ``numpy`` object as a **drop-in replacement** instead:
```python
from autoray import numpy as np
x = np.random.uniform(size=(2, 3, 4), like='tensorflow')
np.tensordot(x, x, [(2, 1), (2, 1)])
# <tf.Tensor 'Tensordot:0' shape=(2, 2) dtype=float32>
np.eye(3, like=x) # many functions obviously can't dispatch without the `like` keyword
# <tf.Tensor 'eye/MatrixDiag:0' shape=(3, 3) dtype=float32>
```
## Customizing functions
If the functions relevant for a particular array type are not defined in the
array's top level module, you can explicitly register the correct location with
``autoray.register_backend``:
```python
ar.register_backend(MyArrayType, 'mymod.mysubmod')
```
If you want to directly provide a missing or alternative implementation of some function for a particular backend you can swap one in with ``autoray.register_function``:
```python
def my_custom_torch_svd(x):
import torch
print('Hello SVD!')
u, s, v = torch.svd(x)
return u, s, v.T
ar.register_function('torch', 'linalg.svd', my_custom_torch_svd)
x = ar.do('random.uniform', size=(3, 4), like='torch')
ar.do('linalg.svd', x)
# Hello SVD!
# (tensor([[-0.5832, 0.6188, -0.5262],
# [-0.5787, -0.7711, -0.2655],
# [-0.5701, 0.1497, 0.8078]]),
# tensor([2.0336, 0.8518, 0.4572]),
# tensor([[-0.4568, -0.3166, -0.6835, -0.4732],
# [-0.5477, 0.2825, -0.2756, 0.7377],
# [ 0.2468, -0.8423, -0.0993, 0.4687]]))
```
If you want to make use of the existing function you can supply ``wrap=True`` in which case the custom function supplied should act like a decorator:
```python
def my_custom_sum_wrapper(old_fn):
def new_fn(*args, **kwargs):
print('Hello sum!')
return old_fn(*args **kwargs)
return new_fn
ar.register_function('torch', 'sum', my_custom_sum_wrapper, wrap=True)
ar.do('sum', x)
# Hello sum!
# tensor(5.4099)
```
Though be careful, if you call ``register_function`` again it will now wrap the *new* function!
Note you can combine ``register_backend`` and ``register_function`` to
dynamically define array types and functions from anywhere.
## Lazy Computation
Abstracting out the array interface also affords an opportunity to run any computations utilizing ``autoray.do`` completely lazily. ``autoray`` provides the ``lazy`` submodule and ``LazyArray`` class for this purpose:
```python
from autoray import lazy
# input array - can be anything autoray.do supports
x = do('random.normal', size=(5, 5), like='torch')
# convert it to a lazy 'computational node'
lx = lazy.array(x)
# supply this to our function
ly = modified_gram_schmidt(lx)
ly
# <LazyArray(fn=stack, shape=(5, 5), backend='torch')>
```
None of the functions have been called yet - simply the shape has been propagated through. ``ly`` represents the final ``stack`` call, and tracks which other ``LazyArray`` instances it needs to materialize before it can compute itself:
```python
ly.show()
# 0 stack[5, 5]
# 1 ├─truediv[5]
# 2 │ ├─getitem[5]
# 3 │ │ ╰─←[5, 5]
# 4 │ ╰─linalg_norm[]
# 5 │ ╰─ ... (getitem[5] from line 2)
# 5 ├─truediv[5]
# 6 │ ├─sub[5]
# 7 │ │ ├─getitem[5]
# 8 │ │ │ ╰─ ... (←[5, 5] from line 3)
# 8 │ │ ╰─mul[5]
# 9 │ │ ├─ ... (truediv[5] from line 1)
# 9 │ │ ╰─tensordot[]
# 10 │ │ ├─ ... (getitem[5] from line 7)
# 10 │ │ ╰─conj[5]
# 11 │ │ ╰─ ... (truediv[5] from line 1)
# 11 │ ╰─linalg_norm[]
# 12 │ ╰─ ... (sub[5] from line 6)
# 12 ├─truediv[5]
# 13 │ ├─sub[5]
# 14 │ │ ├─sub[5]
# 15 │ │ │ ├─getitem[5]
# 16 │ │ │ │ ╰─ ... (←[5, 5] from line 3)
# 16 │ │ │ ╰─mul[5]
# 17 │ │ │ ├─ ... (truediv[5] from line 1)
# 17 │ │ │ ╰─tensordot[]
# 18 │ │ │ ├─ ... (getitem[5] from line 15)
# ...
```
At this point one can perform various bits of introspection:
```python
# --> frequency of each function call
ly.history_fn_frequencies()
# {'stack': 1,
# 'truediv': 5,
# 'linalg_norm': 5,
# 'sub': 10,
# 'mul': 10,
# 'getitem': 5,
# 'None': 1,
# 'tensordot': 10,
# 'conj': 10}
# --> the largest array encountered
ly.history_max_size()
# 25
# --> traverse the unique computational nodes, e.g. to estimate FLOP cost
len([node for node in ly])
# 57
# --> traverse in topological/computational order
len([node for node in ly.ascend()])
# 57
# --> plot the full computation as a circuit
ly.plot()
```
<p align="left"><img src="docs/images/autoray-readme-pic-1.png" width="650px"></p>
Preview the memory footprint (in terms of number of array elements) throughout the computation:
```python
ly.plot_history_size_footprint()
```
<p align="left"><img src="docs/images/autoray-readme-pic-0.png" width="600px"></p>
You can also plot the computation as a `networkx` graph with automatic layout using `ly.plot_graph()`.
Finally, if we want to compute the actual value we call:
```python
ly.compute()
# tensor([[-0.4225, 0.1371, -0.2307, 0.5892, 0.6343],
# [ 0.4079, -0.5103, 0.5924, 0.4261, 0.2016],
# [ 0.2569, -0.5173, -0.4875, -0.4238, 0.4992],
# [-0.2778, -0.5870, -0.3928, 0.3645, -0.5396],
# [ 0.7155, 0.3297, -0.4515, 0.3986, -0.1291]])
```
Note that once a node is computed, it only stores the actual result and clears all references to other ``LazyArray`` instances.
**Sharing intermediates**
If the computation might involve repeated computations then you can call it in a ``shared_intermediates`` context:
```python
with lazy.shared_intermediates():
ly = modified_gram_schmidt(lx)
# --> a few nodes can be reused here (c.f. 57 previously)
len(tuple(ly))
# 51
```
this caches the computational nodes as they are created based on a hash of their input arguments (note this uses ``id`` for array like things, i.e. assumes they are immutable). Unlike eagerly caching function calls in real time, which might consume large amounts of memory, now when the computation runs (i.e. ``ly.compute()`` is called) data is only kept as long as its needed.
**Why not use e.g. ``dask``?**
There are many reasons to use [dask](https://dask.org/), but it incurs a pretty large overhead for big computational graphs with comparatively small operations. Calling and computing the ``modified_gram_schmidt`` function for a 100x100 matrix (20,102 computational nodes) with ``dask.array`` takes ~25sec whereas with ``lazy.array`` it takes ~0.25sec:
```python
import dask.array as da
%%time
dx = da.array(x)
dy = modified_gram_schmidt(dx)
y = dy.compute()
# CPU times: user 25.6 s, sys: 137 ms, total: 25.8 s
# Wall time: 25.5 s
%%time
lx = lazy.array(x)
ly = modified_gram_schmidt(lx)
y = ly.compute()
# CPU times: user 256 ms, sys: 0 ns, total: 256 ms
# Wall time: 255 ms
```
This is enabled by `autoray`'s very minimal implementation.
## Compilation
Various libraries provide tools for tracing numeric functions and turning the resulting computation into a more efficient, compiled function. Notably:
* [``jax.jit``](https://github.com/google/jax)
* [``tensorflow.function``](https://www.tensorflow.org/api_docs/python/tf/function)
* [``torch.jit.trace``](https://pytorch.org/docs/stable/jit.html)
``autoray`` is obviously very well suited to these since it just dispatches functions to whichever library is doing the tracing - functions written using autoray should be immediately compatible with all of them.
**The `autojit` wrapper**
Moreover, ``autoray`` also provides a *unified interface* for compiling functions so that the compilation backend can be easily switched or automatically identified:
```python
from autoray import autojit
mgs = autojit(modified_gram_schmidt)
```
Currently ``autojit`` supports functions with the signature ``fn(*args, **kwargs) -> array`` where both ``args`` and ``kwargs`` can be any nested combination of ``tuple``, ``list`` and ``dict`` objects containings arrays.
We can compare different compiled versions of this simply by changing the ``backend`` option:
```python
x = do("random.normal", size=(50, 50), like='numpy')
# first the uncompiled version
%%timeit
modified_gram_schmidt(x)
# 23.5 ms ± 241 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
# 'python' mode unravels computation into source then uses compile+exec
%%timeit
mgs(x) # backend='python'
# 17.8 ms ± 191 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
mgs(x, backend='torch')
# 11.9 ms ± 80.5 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
mgs(x, backend='tensorflow')
# 1.87 ms ± 441 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
# need to config jax to run on same footing
from jax.config import config
config.update("jax_enable_x64", True)
config.update('jax_platform_name', 'cpu')
%%timeit
mgs(x, backend='jax')
# 226 µs ± 14.8 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
do('linalg.qr', x, like='numpy')[0] # appriximately the 'C' version
# 156 µs ± 32.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```
Here you see *(with this very for-loop heavy function)*, that there are significant gains to be made for all the compilations options. Whilst ``jax`` for example achieves fantastic performance, it should be noted the compilation step takes a lot of time and scales badly (super-linearly) with the number of computational nodes.
# Details
## Special Functions
The main function is ``do``, but the following special (i.e. not in ``numpy``) functions are also implemented that may be useful:
* ``autoray.infer_backend`` - check what library is being inferred for a given array
* ``autoray.to_backend_dtype`` - convert a string specified dtype like ``'float32'`` to ``torch.float32`` for example
* ``autoray.get_dtype_name`` - convert a backend dtype back into the equivalent string specifier like ``'complex64'``
* ``autoray.astype`` - backend agnostic dtype conversion of arrays
* ``autoray.to_numpy`` - convert any array to a ``numpy.ndarray``
Here are all of those in action:
```python
import autoray as ar
backend = 'torch'
dtype = ar.to_backend_dtype('float64', like=backend)
dtype
# torch.float64
x = ar.do('random.normal', size=(4,), dtype=dtype, like=backend)
x
# tensor([ 0.0461, 0.3028, 0.1790, -0.1494], dtype=torch.float64)
ar.infer_backend(x)
# 'torch'
ar.get_dtype_name(x)
# 'float64'
x32 = ar.astype(x, 'float32')
ar.to_numpy(x32)
# array([ 0.04605161, 0.30280888, 0.17903718, -0.14936243], dtype=float32)
```
## Deviations from `numpy`
`autoray` doesn't have an API as such, since it is essentially just a fancy single dispatch mechanism. On the other hand, where translations *are* in place, they generally use the numpy API. So ``autoray.do('stack', arrays=pytorch_tensors, axis=0)`` gets automatically translated into ``torch.stack(tensors=pytorch_tensors, dims=0)`` and so forth.
Currently the one place this isn't true is ``autoray.do('linalg.svd', x)`` where instead ``full_matrices=False`` is used as the default since this generally makes more sense and many libraries don't even implement the other case. Autoray also dispatches ``'linalg.expm'`` for ``numpy`` arrays to ``scipy``, and may well do with other scipy-only functions at some point.
# Installation
You can install ``autoray`` via [conda-forge](https://conda-forge.org/) as well as with ``pip``. Alternatively, simply copy the monolithic ``autoray.py`` into your project internally (if dependencies aren't your thing) to provide ``do``. There are no dependencies.
**Alternatives**
* The ``__array_function__`` protocol has been [suggested](https://www.numpy.org/neps/nep-0018-array-function-protocol.html) and now implemented in ``numpy``. Hopefully this will eventually negate the need for ``autoray``. On the other hand, third party libraries themselves need to implement the interface, which has not been done, for example, in ``tensorflow`` yet.
* The [uarray](https://github.com/Quansight-Labs/uarray) project aims to develop a generic array interface but comes with the warning *"This is experimental and very early research code. Don't use this."*.
# Contributing
Pull requests such as extra translations are very welcome!
%package help
Summary: Development documents and examples for autoray
Provides: python3-autoray-doc
%description help
<p align="left"><img src="https://github.com/jcmgray/autoray/blob/master/docs/images/autoray-header.png?raw=true" alt="autoray" width="500px"></p>
A lightweight python AUTOmatic-arRAY library. Write numeric code that works for:
* [numpy](https://github.com/numpy/numpy)
* [pytorch](https://pytorch.org/)
* [jax](https://github.com/google/jax)
* [cupy](https://github.com/cupy/cupy)
* [dask](https://github.com/dask/dask)
* [autograd](https://github.com/HIPS/autograd)
* [tensorflow](https://github.com/tensorflow/tensorflow)
* [mars](https://github.com/mars-project/mars)
* ... and indeed **any** library that provides a numpy-*ish* api.
[](https://github.com/jcmgray/autoray/actions/workflows/tests.yml) [](https://codecov.io/gh/jcmgray/autoray) [](https://www.codacy.com/gh/jcmgray/autoray/dashboard?utm_source=github.com&utm_medium=referral&utm_content=jcmgray/autoray&utm_campaign=Badge_Grade) [](https://pypi.org/project/autoray/) [](https://anaconda.org/conda-forge/autoray)
As an example consider this function that orthogonalizes a matrix using the modified [Gram-Schmidt](https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process) algorithm:
```python
from autoray import do
def modified_gram_schmidt(X):
# n.b. performance-wise this particular function is *not*
# a good candidate for a pure python implementation
Q = []
for j in range(0, X.shape[0]):
q = X[j, :]
for i in range(0, j):
rij = do('tensordot', do('conj', Q[i]), q, 1)
q = q - rij * Q[i]
rjj = do('linalg.norm', q, 2)
Q.append(q / rjj)
return do('stack', Q, axis=0)
```
Which is now compatible with **all** of the above mentioned libraries! Abstracting out the array interface also allows the following functionality:
* *swap custom versions of functions for specific backends*
* *trace through computations lazily without actually running them*
* *automatically share intermediates and fold constants in computations*
* *compile functions with a unified interface for different backends*
... all implemented in a lightweight manner with an emphasis on minimizing overhead. Of course complete compatibility is not going to be possible for all functions, operations and libraries, but ``autoray`` hopefully makes the job much easier. Of the above, ``tensorflow`` has *quite* a different interface and ``pytorch`` probably the *most* different. Whilst for example not every function will work out-of-the-box for these two, ``autoray`` is also designed with the easy addition of new functions in mind (for example adding new translations is often a one-liner).
**Contents**
* [Basic Usage](#Basic-usage)
* [How does it work?](#how-does-it-work?)
* [Customizing functions](#Customizing-functions)
* [Lazy Computation](#Lazy-Computation)
* [Compilation](#Compilation)
* [Details](#Details)
* [Special Functions](#Special-Functions)
* [Deviations from `numpy`](#Deviations-from-numpy)
* [Installation](#Installation)
* [Contributing](#Contributing)
# Basic Usage
## How does it work?
``autoray`` works using essentially a single dispatch mechanism on the first argument for ``do``, or the ``like`` keyword argument if specified, fetching functions from the whichever module defined that supplied array. Additionally, it caches a few custom translations and lookups so as to handle libraries like ``tensorflow`` that don't exactly replicate the ``numpy`` api (for example ``sum`` gets translated to ``tensorflow.reduce_sum``). Due to the caching, each ``do`` call only adds 1 or 2 dict look-ups as overhead - much less than using ``functools.singledispatch`` for example.
Essentially you call your numpy-style array functions in one of four ways:
***1. Automatic backend:***
```python
do('sqrt', x)
```
Here the backend is inferred from ``x``. Usually dispatch happens on the first argument, but several functions (such as ``stack`` and ``einsum``) know to override this and look elsewhere.
***2. Backend 'like' another array:***
```python
do('random.normal', size=(2, 3, 4), like=x)
```
Here the backend is inferred from another array and can thus be implicitly propagated, even when functions take no array arguments.
***3. Explicit backend:***
```python
do('einsum', eq, x, y, like='customlib')
```
Here one simply supplies the desired function backend explicitly.
***4. Context manager***
```python
with backend_like('autoray.lazy'):
xy = do('tensordot', x, y, 1)
z = do('trace', xy)
```
Here you set a default backend for a whole block of code. This default overrides method 1. above but 2. and 3. still take precedence.
If you don't like the explicit ``do`` syntax, then you can import the fake ``numpy`` object as a **drop-in replacement** instead:
```python
from autoray import numpy as np
x = np.random.uniform(size=(2, 3, 4), like='tensorflow')
np.tensordot(x, x, [(2, 1), (2, 1)])
# <tf.Tensor 'Tensordot:0' shape=(2, 2) dtype=float32>
np.eye(3, like=x) # many functions obviously can't dispatch without the `like` keyword
# <tf.Tensor 'eye/MatrixDiag:0' shape=(3, 3) dtype=float32>
```
## Customizing functions
If the functions relevant for a particular array type are not defined in the
array's top level module, you can explicitly register the correct location with
``autoray.register_backend``:
```python
ar.register_backend(MyArrayType, 'mymod.mysubmod')
```
If you want to directly provide a missing or alternative implementation of some function for a particular backend you can swap one in with ``autoray.register_function``:
```python
def my_custom_torch_svd(x):
import torch
print('Hello SVD!')
u, s, v = torch.svd(x)
return u, s, v.T
ar.register_function('torch', 'linalg.svd', my_custom_torch_svd)
x = ar.do('random.uniform', size=(3, 4), like='torch')
ar.do('linalg.svd', x)
# Hello SVD!
# (tensor([[-0.5832, 0.6188, -0.5262],
# [-0.5787, -0.7711, -0.2655],
# [-0.5701, 0.1497, 0.8078]]),
# tensor([2.0336, 0.8518, 0.4572]),
# tensor([[-0.4568, -0.3166, -0.6835, -0.4732],
# [-0.5477, 0.2825, -0.2756, 0.7377],
# [ 0.2468, -0.8423, -0.0993, 0.4687]]))
```
If you want to make use of the existing function you can supply ``wrap=True`` in which case the custom function supplied should act like a decorator:
```python
def my_custom_sum_wrapper(old_fn):
def new_fn(*args, **kwargs):
print('Hello sum!')
return old_fn(*args **kwargs)
return new_fn
ar.register_function('torch', 'sum', my_custom_sum_wrapper, wrap=True)
ar.do('sum', x)
# Hello sum!
# tensor(5.4099)
```
Though be careful, if you call ``register_function`` again it will now wrap the *new* function!
Note you can combine ``register_backend`` and ``register_function`` to
dynamically define array types and functions from anywhere.
## Lazy Computation
Abstracting out the array interface also affords an opportunity to run any computations utilizing ``autoray.do`` completely lazily. ``autoray`` provides the ``lazy`` submodule and ``LazyArray`` class for this purpose:
```python
from autoray import lazy
# input array - can be anything autoray.do supports
x = do('random.normal', size=(5, 5), like='torch')
# convert it to a lazy 'computational node'
lx = lazy.array(x)
# supply this to our function
ly = modified_gram_schmidt(lx)
ly
# <LazyArray(fn=stack, shape=(5, 5), backend='torch')>
```
None of the functions have been called yet - simply the shape has been propagated through. ``ly`` represents the final ``stack`` call, and tracks which other ``LazyArray`` instances it needs to materialize before it can compute itself:
```python
ly.show()
# 0 stack[5, 5]
# 1 ├─truediv[5]
# 2 │ ├─getitem[5]
# 3 │ │ ╰─←[5, 5]
# 4 │ ╰─linalg_norm[]
# 5 │ ╰─ ... (getitem[5] from line 2)
# 5 ├─truediv[5]
# 6 │ ├─sub[5]
# 7 │ │ ├─getitem[5]
# 8 │ │ │ ╰─ ... (←[5, 5] from line 3)
# 8 │ │ ╰─mul[5]
# 9 │ │ ├─ ... (truediv[5] from line 1)
# 9 │ │ ╰─tensordot[]
# 10 │ │ ├─ ... (getitem[5] from line 7)
# 10 │ │ ╰─conj[5]
# 11 │ │ ╰─ ... (truediv[5] from line 1)
# 11 │ ╰─linalg_norm[]
# 12 │ ╰─ ... (sub[5] from line 6)
# 12 ├─truediv[5]
# 13 │ ├─sub[5]
# 14 │ │ ├─sub[5]
# 15 │ │ │ ├─getitem[5]
# 16 │ │ │ │ ╰─ ... (←[5, 5] from line 3)
# 16 │ │ │ ╰─mul[5]
# 17 │ │ │ ├─ ... (truediv[5] from line 1)
# 17 │ │ │ ╰─tensordot[]
# 18 │ │ │ ├─ ... (getitem[5] from line 15)
# ...
```
At this point one can perform various bits of introspection:
```python
# --> frequency of each function call
ly.history_fn_frequencies()
# {'stack': 1,
# 'truediv': 5,
# 'linalg_norm': 5,
# 'sub': 10,
# 'mul': 10,
# 'getitem': 5,
# 'None': 1,
# 'tensordot': 10,
# 'conj': 10}
# --> the largest array encountered
ly.history_max_size()
# 25
# --> traverse the unique computational nodes, e.g. to estimate FLOP cost
len([node for node in ly])
# 57
# --> traverse in topological/computational order
len([node for node in ly.ascend()])
# 57
# --> plot the full computation as a circuit
ly.plot()
```
<p align="left"><img src="docs/images/autoray-readme-pic-1.png" width="650px"></p>
Preview the memory footprint (in terms of number of array elements) throughout the computation:
```python
ly.plot_history_size_footprint()
```
<p align="left"><img src="docs/images/autoray-readme-pic-0.png" width="600px"></p>
You can also plot the computation as a `networkx` graph with automatic layout using `ly.plot_graph()`.
Finally, if we want to compute the actual value we call:
```python
ly.compute()
# tensor([[-0.4225, 0.1371, -0.2307, 0.5892, 0.6343],
# [ 0.4079, -0.5103, 0.5924, 0.4261, 0.2016],
# [ 0.2569, -0.5173, -0.4875, -0.4238, 0.4992],
# [-0.2778, -0.5870, -0.3928, 0.3645, -0.5396],
# [ 0.7155, 0.3297, -0.4515, 0.3986, -0.1291]])
```
Note that once a node is computed, it only stores the actual result and clears all references to other ``LazyArray`` instances.
**Sharing intermediates**
If the computation might involve repeated computations then you can call it in a ``shared_intermediates`` context:
```python
with lazy.shared_intermediates():
ly = modified_gram_schmidt(lx)
# --> a few nodes can be reused here (c.f. 57 previously)
len(tuple(ly))
# 51
```
this caches the computational nodes as they are created based on a hash of their input arguments (note this uses ``id`` for array like things, i.e. assumes they are immutable). Unlike eagerly caching function calls in real time, which might consume large amounts of memory, now when the computation runs (i.e. ``ly.compute()`` is called) data is only kept as long as its needed.
**Why not use e.g. ``dask``?**
There are many reasons to use [dask](https://dask.org/), but it incurs a pretty large overhead for big computational graphs with comparatively small operations. Calling and computing the ``modified_gram_schmidt`` function for a 100x100 matrix (20,102 computational nodes) with ``dask.array`` takes ~25sec whereas with ``lazy.array`` it takes ~0.25sec:
```python
import dask.array as da
%%time
dx = da.array(x)
dy = modified_gram_schmidt(dx)
y = dy.compute()
# CPU times: user 25.6 s, sys: 137 ms, total: 25.8 s
# Wall time: 25.5 s
%%time
lx = lazy.array(x)
ly = modified_gram_schmidt(lx)
y = ly.compute()
# CPU times: user 256 ms, sys: 0 ns, total: 256 ms
# Wall time: 255 ms
```
This is enabled by `autoray`'s very minimal implementation.
## Compilation
Various libraries provide tools for tracing numeric functions and turning the resulting computation into a more efficient, compiled function. Notably:
* [``jax.jit``](https://github.com/google/jax)
* [``tensorflow.function``](https://www.tensorflow.org/api_docs/python/tf/function)
* [``torch.jit.trace``](https://pytorch.org/docs/stable/jit.html)
``autoray`` is obviously very well suited to these since it just dispatches functions to whichever library is doing the tracing - functions written using autoray should be immediately compatible with all of them.
**The `autojit` wrapper**
Moreover, ``autoray`` also provides a *unified interface* for compiling functions so that the compilation backend can be easily switched or automatically identified:
```python
from autoray import autojit
mgs = autojit(modified_gram_schmidt)
```
Currently ``autojit`` supports functions with the signature ``fn(*args, **kwargs) -> array`` where both ``args`` and ``kwargs`` can be any nested combination of ``tuple``, ``list`` and ``dict`` objects containings arrays.
We can compare different compiled versions of this simply by changing the ``backend`` option:
```python
x = do("random.normal", size=(50, 50), like='numpy')
# first the uncompiled version
%%timeit
modified_gram_schmidt(x)
# 23.5 ms ± 241 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
# 'python' mode unravels computation into source then uses compile+exec
%%timeit
mgs(x) # backend='python'
# 17.8 ms ± 191 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
mgs(x, backend='torch')
# 11.9 ms ± 80.5 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
mgs(x, backend='tensorflow')
# 1.87 ms ± 441 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
# need to config jax to run on same footing
from jax.config import config
config.update("jax_enable_x64", True)
config.update('jax_platform_name', 'cpu')
%%timeit
mgs(x, backend='jax')
# 226 µs ± 14.8 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
do('linalg.qr', x, like='numpy')[0] # appriximately the 'C' version
# 156 µs ± 32.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```
Here you see *(with this very for-loop heavy function)*, that there are significant gains to be made for all the compilations options. Whilst ``jax`` for example achieves fantastic performance, it should be noted the compilation step takes a lot of time and scales badly (super-linearly) with the number of computational nodes.
# Details
## Special Functions
The main function is ``do``, but the following special (i.e. not in ``numpy``) functions are also implemented that may be useful:
* ``autoray.infer_backend`` - check what library is being inferred for a given array
* ``autoray.to_backend_dtype`` - convert a string specified dtype like ``'float32'`` to ``torch.float32`` for example
* ``autoray.get_dtype_name`` - convert a backend dtype back into the equivalent string specifier like ``'complex64'``
* ``autoray.astype`` - backend agnostic dtype conversion of arrays
* ``autoray.to_numpy`` - convert any array to a ``numpy.ndarray``
Here are all of those in action:
```python
import autoray as ar
backend = 'torch'
dtype = ar.to_backend_dtype('float64', like=backend)
dtype
# torch.float64
x = ar.do('random.normal', size=(4,), dtype=dtype, like=backend)
x
# tensor([ 0.0461, 0.3028, 0.1790, -0.1494], dtype=torch.float64)
ar.infer_backend(x)
# 'torch'
ar.get_dtype_name(x)
# 'float64'
x32 = ar.astype(x, 'float32')
ar.to_numpy(x32)
# array([ 0.04605161, 0.30280888, 0.17903718, -0.14936243], dtype=float32)
```
## Deviations from `numpy`
`autoray` doesn't have an API as such, since it is essentially just a fancy single dispatch mechanism. On the other hand, where translations *are* in place, they generally use the numpy API. So ``autoray.do('stack', arrays=pytorch_tensors, axis=0)`` gets automatically translated into ``torch.stack(tensors=pytorch_tensors, dims=0)`` and so forth.
Currently the one place this isn't true is ``autoray.do('linalg.svd', x)`` where instead ``full_matrices=False`` is used as the default since this generally makes more sense and many libraries don't even implement the other case. Autoray also dispatches ``'linalg.expm'`` for ``numpy`` arrays to ``scipy``, and may well do with other scipy-only functions at some point.
# Installation
You can install ``autoray`` via [conda-forge](https://conda-forge.org/) as well as with ``pip``. Alternatively, simply copy the monolithic ``autoray.py`` into your project internally (if dependencies aren't your thing) to provide ``do``. There are no dependencies.
**Alternatives**
* The ``__array_function__`` protocol has been [suggested](https://www.numpy.org/neps/nep-0018-array-function-protocol.html) and now implemented in ``numpy``. Hopefully this will eventually negate the need for ``autoray``. On the other hand, third party libraries themselves need to implement the interface, which has not been done, for example, in ``tensorflow`` yet.
* The [uarray](https://github.com/Quansight-Labs/uarray) project aims to develop a generic array interface but comes with the warning *"This is experimental and very early research code. Don't use this."*.
# Contributing
Pull requests such as extra translations are very welcome!
%prep
%autosetup -n autoray-0.6.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-autoray -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.3-1
- Package Spec generated
|