summaryrefslogtreecommitdiff
path: root/python-aws-cdk-aws-neptune-alpha.spec
blob: 79c948f31b49a2613af0671ca42585806b1061a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
%global _empty_manifest_terminate_build 0
Name:		python-aws-cdk.aws-neptune-alpha
Version:	2.81.0a0
Release:	1
Summary:	The CDK Construct Library for AWS::Neptune
License:	Apache-2.0
URL:		https://github.com/aws/aws-cdk
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/d8/ca/5fe659954dce34f9527a2cac3eda29761e417eb00e0b937c8f5b1cb2b07e/aws-cdk.aws-neptune-alpha-2.81.0a0.tar.gz
BuildArch:	noarch

Requires:	python3-aws-cdk-lib
Requires:	python3-constructs
Requires:	python3-jsii
Requires:	python3-publication
Requires:	python3-typeguard

%description
<!--END STABILITY BANNER-->
Amazon Neptune is a fast, reliable, fully managed graph database service that makes it easy to build and run applications that work with highly connected datasets. The core of Neptune is a purpose-built, high-performance graph database engine. This engine is optimized for storing billions of relationships and querying the graph with milliseconds latency. Neptune supports the popular graph query languages Apache TinkerPop Gremlin and W3C’s SPARQL, enabling you to build queries that efficiently navigate highly connected datasets.
The `@aws-cdk/aws-neptune` package contains primitives for setting up Neptune database clusters and instances.
```python
import aws_cdk.aws_neptune_alpha as neptune
```
## Starting a Neptune Database
To set up a Neptune database, define a `DatabaseCluster`. You must always launch a database in a VPC.
```python
cluster = neptune.DatabaseCluster(self, "Database",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE
)
```
By default only writer instance is provisioned with this construct.
## Connecting
To control who can access the cluster, use the `.connections` attribute. Neptune databases have a default port, so
you don't need to specify the port:
```python
cluster.connections.allow_default_port_from_any_ipv4("Open to the world")
```
The endpoints to access your database cluster will be available as the `.clusterEndpoint` and `.clusterReadEndpoint`
attributes:
```python
write_address = cluster.cluster_endpoint.socket_address
```
## IAM Authentication
You can also authenticate to a database cluster using AWS Identity and Access Management (IAM) database authentication;
See [https://docs.aws.amazon.com/neptune/latest/userguide/iam-auth.html](https://docs.aws.amazon.com/neptune/latest/userguide/iam-auth.html) for more information and a list of supported
versions and limitations.
The following example shows enabling IAM authentication for a database cluster and granting connection access to an IAM role.
```python
cluster = neptune.DatabaseCluster(self, "Cluster",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    iam_authentication=True
)
role = iam.Role(self, "DBRole", assumed_by=iam.AccountPrincipal(self.account))
# Use one of the following statements to grant the role the necessary permissions
cluster.grant_connect(role) # Grant the role neptune-db:* access to the DB
cluster.grant(role, "neptune-db:ReadDataViaQuery", "neptune-db:WriteDataViaQuery")
```
## Customizing parameters
Neptune allows configuring database behavior by supplying custom parameter groups.  For more details, refer to the
following link: [https://docs.aws.amazon.com/neptune/latest/userguide/parameters.html](https://docs.aws.amazon.com/neptune/latest/userguide/parameters.html)
```python
cluster_params = neptune.ClusterParameterGroup(self, "ClusterParams",
    description="Cluster parameter group",
    parameters={
        "neptune_enable_audit_log": "1"
    }
)
db_params = neptune.ParameterGroup(self, "DbParams",
    description="Db parameter group",
    parameters={
        "neptune_query_timeout": "120000"
    }
)
cluster = neptune.DatabaseCluster(self, "Database",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    cluster_parameter_group=cluster_params,
    parameter_group=db_params
)
```
Note: if you want to use Neptune engine `1.2.0.0` or later, you need to specify the corresponding `engineVersion` prop to `neptune.DatabaseCluster` and `family` prop of `ParameterGroupFamily.NEPTUNE_1_2` to `neptune.ClusterParameterGroup` and `neptune.ParameterGroup`.
## Adding replicas
`DatabaseCluster` allows launching replicas along with the writer instance. This can be specified using the `instanceCount`
attribute.
```python
cluster = neptune.DatabaseCluster(self, "Database",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    instances=2
)
```
Additionally, it is also possible to add replicas using `DatabaseInstance` for an existing cluster.
```python
replica1 = neptune.DatabaseInstance(self, "Instance",
    cluster=cluster,
    instance_type=neptune.InstanceType.R5_LARGE
)
```
## Automatic minor version upgrades
By setting `autoMinorVersionUpgrade` to true, Neptune will automatically update
the engine of the entire cluster to the latest minor version after a stabilization
window of 2 to 3 weeks.
```python
neptune.DatabaseCluster(self, "Cluster",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    auto_minor_version_upgrade=True
)
```
## Logging
Neptune supports various methods for monitoring performance and usage. One of those methods is logging
1. Neptune provides logs e.g. audit logs which can be viewed or downloaded via the AWS Console. Audit logs can be enabled using the `neptune_enable_audit_log` parameter in `ClusterParameterGroup` or `ParameterGroup`
2. Neptune provides the ability to export those logs to CloudWatch Logs
```python
# Cluster parameter group with the neptune_enable_audit_log param set to 1
cluster_parameter_group = neptune.ClusterParameterGroup(self, "ClusterParams",
    description="Cluster parameter group",
    parameters={
        "neptune_enable_audit_log": "1"
    }
)
cluster = neptune.DatabaseCluster(self, "Database",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    # Audit logs are enabled via the clusterParameterGroup
    cluster_parameter_group=cluster_parameter_group,
    # Optionally configuring audit logs to be exported to CloudWatch Logs
    cloudwatch_logs_exports=[neptune.LogType.AUDIT],
    # Optionally set a retention period on exported CloudWatch Logs
    cloudwatch_logs_retention=logs.RetentionDays.ONE_MONTH
)
```
For more information on monitoring, refer to https://docs.aws.amazon.com/neptune/latest/userguide/monitoring.html.
For more information on audit logs, refer to https://docs.aws.amazon.com/neptune/latest/userguide/auditing.html.
For more information on exporting logs to CloudWatch Logs, refer to https://docs.aws.amazon.com/neptune/latest/userguide/cloudwatch-logs.html.
## Metrics
Both `DatabaseCluster` and `DatabaseInstance` provide a `metric()` method to help with cluster-level and instance-level monitoring.
```python
# cluster: neptune.DatabaseCluster
# instance: neptune.DatabaseInstance
cluster.metric("SparqlRequestsPerSec") # cluster-level SparqlErrors metric
instance.metric("SparqlRequestsPerSec")
```
For more details on the available metrics, refer to https://docs.aws.amazon.com/neptune/latest/userguide/cw-metrics.html

%package -n python3-aws-cdk.aws-neptune-alpha
Summary:	The CDK Construct Library for AWS::Neptune
Provides:	python-aws-cdk.aws-neptune-alpha
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-aws-cdk.aws-neptune-alpha
<!--END STABILITY BANNER-->
Amazon Neptune is a fast, reliable, fully managed graph database service that makes it easy to build and run applications that work with highly connected datasets. The core of Neptune is a purpose-built, high-performance graph database engine. This engine is optimized for storing billions of relationships and querying the graph with milliseconds latency. Neptune supports the popular graph query languages Apache TinkerPop Gremlin and W3C’s SPARQL, enabling you to build queries that efficiently navigate highly connected datasets.
The `@aws-cdk/aws-neptune` package contains primitives for setting up Neptune database clusters and instances.
```python
import aws_cdk.aws_neptune_alpha as neptune
```
## Starting a Neptune Database
To set up a Neptune database, define a `DatabaseCluster`. You must always launch a database in a VPC.
```python
cluster = neptune.DatabaseCluster(self, "Database",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE
)
```
By default only writer instance is provisioned with this construct.
## Connecting
To control who can access the cluster, use the `.connections` attribute. Neptune databases have a default port, so
you don't need to specify the port:
```python
cluster.connections.allow_default_port_from_any_ipv4("Open to the world")
```
The endpoints to access your database cluster will be available as the `.clusterEndpoint` and `.clusterReadEndpoint`
attributes:
```python
write_address = cluster.cluster_endpoint.socket_address
```
## IAM Authentication
You can also authenticate to a database cluster using AWS Identity and Access Management (IAM) database authentication;
See [https://docs.aws.amazon.com/neptune/latest/userguide/iam-auth.html](https://docs.aws.amazon.com/neptune/latest/userguide/iam-auth.html) for more information and a list of supported
versions and limitations.
The following example shows enabling IAM authentication for a database cluster and granting connection access to an IAM role.
```python
cluster = neptune.DatabaseCluster(self, "Cluster",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    iam_authentication=True
)
role = iam.Role(self, "DBRole", assumed_by=iam.AccountPrincipal(self.account))
# Use one of the following statements to grant the role the necessary permissions
cluster.grant_connect(role) # Grant the role neptune-db:* access to the DB
cluster.grant(role, "neptune-db:ReadDataViaQuery", "neptune-db:WriteDataViaQuery")
```
## Customizing parameters
Neptune allows configuring database behavior by supplying custom parameter groups.  For more details, refer to the
following link: [https://docs.aws.amazon.com/neptune/latest/userguide/parameters.html](https://docs.aws.amazon.com/neptune/latest/userguide/parameters.html)
```python
cluster_params = neptune.ClusterParameterGroup(self, "ClusterParams",
    description="Cluster parameter group",
    parameters={
        "neptune_enable_audit_log": "1"
    }
)
db_params = neptune.ParameterGroup(self, "DbParams",
    description="Db parameter group",
    parameters={
        "neptune_query_timeout": "120000"
    }
)
cluster = neptune.DatabaseCluster(self, "Database",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    cluster_parameter_group=cluster_params,
    parameter_group=db_params
)
```
Note: if you want to use Neptune engine `1.2.0.0` or later, you need to specify the corresponding `engineVersion` prop to `neptune.DatabaseCluster` and `family` prop of `ParameterGroupFamily.NEPTUNE_1_2` to `neptune.ClusterParameterGroup` and `neptune.ParameterGroup`.
## Adding replicas
`DatabaseCluster` allows launching replicas along with the writer instance. This can be specified using the `instanceCount`
attribute.
```python
cluster = neptune.DatabaseCluster(self, "Database",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    instances=2
)
```
Additionally, it is also possible to add replicas using `DatabaseInstance` for an existing cluster.
```python
replica1 = neptune.DatabaseInstance(self, "Instance",
    cluster=cluster,
    instance_type=neptune.InstanceType.R5_LARGE
)
```
## Automatic minor version upgrades
By setting `autoMinorVersionUpgrade` to true, Neptune will automatically update
the engine of the entire cluster to the latest minor version after a stabilization
window of 2 to 3 weeks.
```python
neptune.DatabaseCluster(self, "Cluster",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    auto_minor_version_upgrade=True
)
```
## Logging
Neptune supports various methods for monitoring performance and usage. One of those methods is logging
1. Neptune provides logs e.g. audit logs which can be viewed or downloaded via the AWS Console. Audit logs can be enabled using the `neptune_enable_audit_log` parameter in `ClusterParameterGroup` or `ParameterGroup`
2. Neptune provides the ability to export those logs to CloudWatch Logs
```python
# Cluster parameter group with the neptune_enable_audit_log param set to 1
cluster_parameter_group = neptune.ClusterParameterGroup(self, "ClusterParams",
    description="Cluster parameter group",
    parameters={
        "neptune_enable_audit_log": "1"
    }
)
cluster = neptune.DatabaseCluster(self, "Database",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    # Audit logs are enabled via the clusterParameterGroup
    cluster_parameter_group=cluster_parameter_group,
    # Optionally configuring audit logs to be exported to CloudWatch Logs
    cloudwatch_logs_exports=[neptune.LogType.AUDIT],
    # Optionally set a retention period on exported CloudWatch Logs
    cloudwatch_logs_retention=logs.RetentionDays.ONE_MONTH
)
```
For more information on monitoring, refer to https://docs.aws.amazon.com/neptune/latest/userguide/monitoring.html.
For more information on audit logs, refer to https://docs.aws.amazon.com/neptune/latest/userguide/auditing.html.
For more information on exporting logs to CloudWatch Logs, refer to https://docs.aws.amazon.com/neptune/latest/userguide/cloudwatch-logs.html.
## Metrics
Both `DatabaseCluster` and `DatabaseInstance` provide a `metric()` method to help with cluster-level and instance-level monitoring.
```python
# cluster: neptune.DatabaseCluster
# instance: neptune.DatabaseInstance
cluster.metric("SparqlRequestsPerSec") # cluster-level SparqlErrors metric
instance.metric("SparqlRequestsPerSec")
```
For more details on the available metrics, refer to https://docs.aws.amazon.com/neptune/latest/userguide/cw-metrics.html

%package help
Summary:	Development documents and examples for aws-cdk.aws-neptune-alpha
Provides:	python3-aws-cdk.aws-neptune-alpha-doc
%description help
<!--END STABILITY BANNER-->
Amazon Neptune is a fast, reliable, fully managed graph database service that makes it easy to build and run applications that work with highly connected datasets. The core of Neptune is a purpose-built, high-performance graph database engine. This engine is optimized for storing billions of relationships and querying the graph with milliseconds latency. Neptune supports the popular graph query languages Apache TinkerPop Gremlin and W3C’s SPARQL, enabling you to build queries that efficiently navigate highly connected datasets.
The `@aws-cdk/aws-neptune` package contains primitives for setting up Neptune database clusters and instances.
```python
import aws_cdk.aws_neptune_alpha as neptune
```
## Starting a Neptune Database
To set up a Neptune database, define a `DatabaseCluster`. You must always launch a database in a VPC.
```python
cluster = neptune.DatabaseCluster(self, "Database",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE
)
```
By default only writer instance is provisioned with this construct.
## Connecting
To control who can access the cluster, use the `.connections` attribute. Neptune databases have a default port, so
you don't need to specify the port:
```python
cluster.connections.allow_default_port_from_any_ipv4("Open to the world")
```
The endpoints to access your database cluster will be available as the `.clusterEndpoint` and `.clusterReadEndpoint`
attributes:
```python
write_address = cluster.cluster_endpoint.socket_address
```
## IAM Authentication
You can also authenticate to a database cluster using AWS Identity and Access Management (IAM) database authentication;
See [https://docs.aws.amazon.com/neptune/latest/userguide/iam-auth.html](https://docs.aws.amazon.com/neptune/latest/userguide/iam-auth.html) for more information and a list of supported
versions and limitations.
The following example shows enabling IAM authentication for a database cluster and granting connection access to an IAM role.
```python
cluster = neptune.DatabaseCluster(self, "Cluster",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    iam_authentication=True
)
role = iam.Role(self, "DBRole", assumed_by=iam.AccountPrincipal(self.account))
# Use one of the following statements to grant the role the necessary permissions
cluster.grant_connect(role) # Grant the role neptune-db:* access to the DB
cluster.grant(role, "neptune-db:ReadDataViaQuery", "neptune-db:WriteDataViaQuery")
```
## Customizing parameters
Neptune allows configuring database behavior by supplying custom parameter groups.  For more details, refer to the
following link: [https://docs.aws.amazon.com/neptune/latest/userguide/parameters.html](https://docs.aws.amazon.com/neptune/latest/userguide/parameters.html)
```python
cluster_params = neptune.ClusterParameterGroup(self, "ClusterParams",
    description="Cluster parameter group",
    parameters={
        "neptune_enable_audit_log": "1"
    }
)
db_params = neptune.ParameterGroup(self, "DbParams",
    description="Db parameter group",
    parameters={
        "neptune_query_timeout": "120000"
    }
)
cluster = neptune.DatabaseCluster(self, "Database",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    cluster_parameter_group=cluster_params,
    parameter_group=db_params
)
```
Note: if you want to use Neptune engine `1.2.0.0` or later, you need to specify the corresponding `engineVersion` prop to `neptune.DatabaseCluster` and `family` prop of `ParameterGroupFamily.NEPTUNE_1_2` to `neptune.ClusterParameterGroup` and `neptune.ParameterGroup`.
## Adding replicas
`DatabaseCluster` allows launching replicas along with the writer instance. This can be specified using the `instanceCount`
attribute.
```python
cluster = neptune.DatabaseCluster(self, "Database",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    instances=2
)
```
Additionally, it is also possible to add replicas using `DatabaseInstance` for an existing cluster.
```python
replica1 = neptune.DatabaseInstance(self, "Instance",
    cluster=cluster,
    instance_type=neptune.InstanceType.R5_LARGE
)
```
## Automatic minor version upgrades
By setting `autoMinorVersionUpgrade` to true, Neptune will automatically update
the engine of the entire cluster to the latest minor version after a stabilization
window of 2 to 3 weeks.
```python
neptune.DatabaseCluster(self, "Cluster",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    auto_minor_version_upgrade=True
)
```
## Logging
Neptune supports various methods for monitoring performance and usage. One of those methods is logging
1. Neptune provides logs e.g. audit logs which can be viewed or downloaded via the AWS Console. Audit logs can be enabled using the `neptune_enable_audit_log` parameter in `ClusterParameterGroup` or `ParameterGroup`
2. Neptune provides the ability to export those logs to CloudWatch Logs
```python
# Cluster parameter group with the neptune_enable_audit_log param set to 1
cluster_parameter_group = neptune.ClusterParameterGroup(self, "ClusterParams",
    description="Cluster parameter group",
    parameters={
        "neptune_enable_audit_log": "1"
    }
)
cluster = neptune.DatabaseCluster(self, "Database",
    vpc=vpc,
    instance_type=neptune.InstanceType.R5_LARGE,
    # Audit logs are enabled via the clusterParameterGroup
    cluster_parameter_group=cluster_parameter_group,
    # Optionally configuring audit logs to be exported to CloudWatch Logs
    cloudwatch_logs_exports=[neptune.LogType.AUDIT],
    # Optionally set a retention period on exported CloudWatch Logs
    cloudwatch_logs_retention=logs.RetentionDays.ONE_MONTH
)
```
For more information on monitoring, refer to https://docs.aws.amazon.com/neptune/latest/userguide/monitoring.html.
For more information on audit logs, refer to https://docs.aws.amazon.com/neptune/latest/userguide/auditing.html.
For more information on exporting logs to CloudWatch Logs, refer to https://docs.aws.amazon.com/neptune/latest/userguide/cloudwatch-logs.html.
## Metrics
Both `DatabaseCluster` and `DatabaseInstance` provide a `metric()` method to help with cluster-level and instance-level monitoring.
```python
# cluster: neptune.DatabaseCluster
# instance: neptune.DatabaseInstance
cluster.metric("SparqlRequestsPerSec") # cluster-level SparqlErrors metric
instance.metric("SparqlRequestsPerSec")
```
For more details on the available metrics, refer to https://docs.aws.amazon.com/neptune/latest/userguide/cw-metrics.html

%prep
%autosetup -n aws-cdk.aws-neptune-alpha-2.81.0a0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-aws-cdk.aws-neptune-alpha -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 2.81.0a0-1
- Package Spec generated