summaryrefslogtreecommitdiff
path: root/python-azure-ai-anomalydetector.spec
blob: 2dce3725824d5bea979f84d38027e3c02256209a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
%global _empty_manifest_terminate_build 0
Name:		python-azure-ai-anomalydetector
Version:	3.0.0b6
Release:	1
Summary:	Microsoft Cognitive Services Anomaly Detector Client Library for Python
License:	MIT License
URL:		https://github.com/Azure/azure-sdk-for-python/tree/main/sdk
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/2b/c7/6a0e10b4b5f15b369299ef1ae448681f48b55314ce6824976a164453dbb0/azure-ai-anomalydetector-3.0.0b6.zip
BuildArch:	noarch

Requires:	python3-isodate
Requires:	python3-azure-core
Requires:	python3-typing-extensions

%description
# Cognitive Services Anomaly Detector client library for Python

[Anomaly Detector](https://learn.microsoft.com/azure/cognitive-services/Anomaly-Detector/overview) is an AI service with a set of APIs, which enables you to monitor and detect anomalies in your time series data with little machine learning (ML) knowledge, either batch validation or real-time inference.

## Getting started

### Prerequisites

- Python 3.7 or later is required to use this package.
- You need an [Azure subscription][azure_sub] to use this package.
- An existing Cognitive Services Anomaly Detector instance.

### Install the package

```bash
python -m pip install azure-ai-anomalydetector
```

> Note: This version of the client library defaults to the `3.0.0b6` version of the service.

This table shows the relationship between SDK versions and supported API versions of the service:

|SDK version|Supported API version of service |
|-------------|---------------|
|3.0.0b6 | 1.1|
|3.0.0b4, 3.0.0b5| 1.1-preview-1|
|3.0.0b3 | 1.1-preview|
|3.0.0b1, 3.0.0b2  | 1.0 |

### Authenticate the client

#### Get the endpoint

You can find the endpoint for your Anomaly Detector service resource using the
[Azure Portal](https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesAnomalyDetector)
or [Azure CLI](https://learn.microsoft.com/cli/azure/):

```bash
# Get the endpoint for the Anomaly Detector service resource
az cognitiveservices account show --name "resource-name" --resource-group "resource-group-name" --query "properties.endpoint"
```

#### Get the API Key

You can get the **API Key** from the Anomaly Detector service resource in the Azure Portal.
Alternatively, you can use **Azure CLI** snippet below to get the API key of your resource.

```PowerShell
az cognitiveservices account keys list --resource-group <your-resource-group-name> --name <your-resource-name>
```

#### Create a AnomalyDetectorClient with an API Key Credential

Once you have the value for the API key, you can pass it as a string into an instance of **AzureKeyCredential**. Use the key as the credential parameter
to authenticate the client:

```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.anomalydetector import AnomalyDetectorClient

credential = AzureKeyCredential("<api_key>")
client = AnomalyDetectorClient(endpoint="https://<resource-name>.cognitiveservices.azure.com/", credential=credential)
```

## Key concepts

With the Anomaly Detector, you can either detect anomalies in one variable using **Univariate Anomaly Detection**, or detect anomalies in multiple variables with **Multivariate Anomaly Detection**.

|Feature  |Description  |
|---------|---------|
|Univariate Anomaly Detection | Detect anomalies in one variable, like revenue, cost, etc. The model was selected automatically based on your data pattern. |
|Multivariate Anomaly Detection| Detect anomalies in multiple variables with correlations, which are usually gathered from equipment or other complex system. The underlying model used is Graph attention network.|

### Univariate Anomaly Detection

The Univariate Anomaly Detection API enables you to monitor and detect abnormalities in your time series data without having to know machine learning. The algorithms adapt by automatically identifying and applying the best-fitting models to your data, regardless of industry, scenario, or data volume. Using your time series data, the API determines boundaries for anomaly detection, expected values, and which data points are anomalies.

Using the Anomaly Detector doesn't require any prior experience in machine learning, and the REST API enables you to easily integrate the service into your applications and processes.

With the Univariate Anomaly Detection, you can automatically detect anomalies throughout your time series data, or as they occur in real-time.

|Feature  |Description  |
|---------|---------|
| Streaming detection| Detect anomalies in your streaming data by using previously seen data points to determine if your latest one is an anomaly. This operation generates a model using the data points you send, and determines if the target point is an anomaly. By calling the API with each new data point you generate, you can monitor your data as it's created. |
| Batch detection | Use your time series to detect any anomalies that might exist throughout your data. This operation generates a model using your entire time series data, with each point analyzed with the same model.         |
| Change points detection | Use your time series to detect any trend change points that exist in your data. This operation generates a model using your entire time series data, with each point analyzed with the same model.    |

### Multivariate Anomaly Detection

The **Multivariate Anomaly Detection** APIs further enable developers by easily integrating advanced AI for detecting anomalies from groups of metrics, without the need for machine learning knowledge or labeled data. Dependencies and inter-correlations between up to 300 different signals are now automatically counted as key factors. This new capability helps you to proactively protect your complex systems such as software applications, servers, factory machines, spacecraft, or even your business, from failures.

With the Multivariate Anomaly Detection, you can automatically detect anomalies throughout your time series data, or as they occur in real-time. There are three processes to use Multivariate Anomaly Detection.

- **Training**: Use Train Model API to create and train a model, then use Get Model Status API to get the status and model metadata.
- **Inference**:
  - Use Async Inference API to trigger an asynchronous inference process and use Get Inference results API to get detection results on a batch of data.
  - You could also use Sync Inference API to trigger a detection on one timestamp every time.
- **Other operations**: List Model API and Delete Model API are supported in Multivariate Anomaly Detection model for model management.

### Thread safety

We guarantee that all client instance methods are thread-safe and independent of each other ([guideline](https://azure.github.io/azure-sdk/dotnet_introduction.html#dotnet-service-methods-thread-safety)). This ensures that the recommendation of reusing client instances is always safe, even across threads.

## Examples

The following section provides several code snippets covering some of the most common Anomaly Detector service tasks, including:

- [Univariate Anomaly Detection - Batch detection](#batch-detection)
- [Univariate Anomaly Detection - Streaming detection](#streaming-detection)
- [Univariate Anomaly Detection - Detect change points](#detect-change-points)
- [Multivariate Anomaly Detection](#multivariate-anomaly-detection-sample)

### Batch detection

```python
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.core.credentials import AzureKeyCredential
from azure.ai.anomalydetector.models import *


SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
TIME_SERIES_DATA_PATH = os.path.join("sample_data", "request-data.csv")
client = AnomalyDetectorClient(ANOMALY_DETECTOR_ENDPOINT, AzureKeyCredential(SUBSCRIPTION_KEY))

series = []
data_file = pd.read_csv(TIME_SERIES_DATA_PATH, header=None, encoding="utf-8", parse_dates=[0])
for index, row in data_file.iterrows():
    series.append(TimeSeriesPoint(timestamp=row[0], value=row[1]))

request = UnivariateDetectionOptions(
    series=series,
    granularity=TimeGranularity.DAILY,
)


if any(response.is_anomaly):
    print("An anomaly was detected at index:")
    for i, value in enumerate(response.is_anomaly):
        if value:
            print(i)
else:
    print("No anomalies were detected in the time series.")

```

### Streaming Detection

```python
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.core.credentials import AzureKeyCredential
from azure.ai.anomalydetector.models import *


SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
TIME_SERIES_DATA_PATH = os.path.join("sample_data", "request-data.csv")
client = AnomalyDetectorClient(ANOMALY_DETECTOR_ENDPOINT, AzureKeyCredential(SUBSCRIPTION_KEY))

series = []
data_file = pd.read_csv(TIME_SERIES_DATA_PATH, header=None, encoding="utf-8", parse_dates=[0])
for index, row in data_file.iterrows():
    series.append(TimeSeriesPoint(timestamp=row[0], value=row[1]))

request = UnivariateDetectionOptions(
    series=series,
    granularity=TimeGranularity.DAILY,
)
print("Detecting the anomaly status of the latest data point.")

if response.is_anomaly:
    print("The latest point is detected as anomaly.")
else:
    print("The latest point is not detected as anomaly.")
```

### Detect change points

```python
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.core.credentials import AzureKeyCredential
from azure.ai.anomalydetector.models import *


SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
TIME_SERIES_DATA_PATH = os.path.join("sample_data", "request-data.csv")
client = AnomalyDetectorClient(ANOMALY_DETECTOR_ENDPOINT, AzureKeyCredential(SUBSCRIPTION_KEY))

series = []
data_file = pd.read_csv(TIME_SERIES_DATA_PATH, header=None, encoding="utf-8", parse_dates=[0])
for index, row in data_file.iterrows():
    series.append(TimeSeriesPoint(timestamp=row[0], value=row[1]))

request = UnivariateChangePointDetectionOptions(
    series=series,
    granularity=TimeGranularity.DAILY,
)


if any(response.is_change_point):
    print("An change point was detected at index:")
    for i, value in enumerate(response.is_change_point):
        if value:
            print(i)
else:
    print("No change point were detected in the time series.")

```

### Multivariate Anomaly Detection Sample

To see how to use Anomaly Detector library to conduct Multivariate Anomaly Detection, see this [sample](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_multivariate_detect.py).

To get more details of Anomaly Detector package, refer to this [azure.ai.anomalydetector package](https://azuresdkdocs.blob.core.windows.net/$web/python/azure-ai-anomalydetector/latest/azure.ai.anomalydetector.html#).

## Troubleshooting

### General

Anomaly Detector client library will raise exceptions defined in [Azure Core](https://azuresdkdocs.blob.core.windows.net/$web/python/azure-core/latest/azure.core.html#module-azure.core.exceptions).

### Logging

This library uses the standard [logging](https://docs.python.org/3/library/logging.html) library for logging.

Basic information about HTTP sessions (URLs, headers, etc.) is logged at `INFO` level.

Detailed `DEBUG` level logging, including request/response bodies and **unredacted**
headers, can be enabled on the client or per-operation with the `logging_enable` keyword argument.

See full SDK logging documentation with examples [here](https://learn.microsoft.com/azure/developer/python/sdk/azure-sdk-logging).

### Optional Configuration

Optional keyword arguments can be passed in at the client and per-operation level.
The azure-core [reference documentation](https://azuresdkdocs.blob.core.windows.net/$web/python/azure-core/latest/azure.core.html) describes available configurations for retries, logging, transport protocols, and more.

## Next steps

These code samples show common scenario operations with the Azure Anomaly Detector library. More samples can be found under the [samples](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/) directory.

- Univariate Anomaly Detection - Batch Detection: [sample_detect_entire_series_anomaly.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_detect_entire_series_anomaly.py)

- Univariate Anomaly Detection - Streaming Detection: [sample_detect_last_point_anomaly.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_detect_last_point_anomaly.py)

- Univariate Anomaly Detection - Change Point Detection: [sample_detect_change_point.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_detect_change_point.py)

- Multivariate Anomaly Detection: [sample_multivariate_detect.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_multivariate_detect.py)

### Additional documentation

For more extensive documentation on Azure Anomaly Detector, see the [Anomaly Detector documentation](https://learn.microsoft.com/azure/cognitive-services/anomaly-detector/overview) on docs.microsoft.com.

## Contributing

This project welcomes contributions and suggestions. Most contributions require
you to agree to a Contributor License Agreement (CLA) declaring that you have
the right to, and actually do, grant us the rights to use your contribution.
For details, visit [CLA homepage](https://cla.microsoft.com).

When you submit a pull request, a CLA-bot will automatically determine whether
you need to provide a CLA and decorate the PR appropriately (e.g., label,
comment). Simply follow the instructions provided by the bot. You will only
need to do this once across all repos using our CLA.

This project has adopted the
[Microsoft Open Source Code of Conduct][code_of_conduct]. For more information,
see the Code of Conduct FAQ or contact opencode@microsoft.com with any
additional questions or comments.

<!-- LINKS -->
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[azure_sub]: https://azure.microsoft.com/free/


%package -n python3-azure-ai-anomalydetector
Summary:	Microsoft Cognitive Services Anomaly Detector Client Library for Python
Provides:	python-azure-ai-anomalydetector
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-azure-ai-anomalydetector
# Cognitive Services Anomaly Detector client library for Python

[Anomaly Detector](https://learn.microsoft.com/azure/cognitive-services/Anomaly-Detector/overview) is an AI service with a set of APIs, which enables you to monitor and detect anomalies in your time series data with little machine learning (ML) knowledge, either batch validation or real-time inference.

## Getting started

### Prerequisites

- Python 3.7 or later is required to use this package.
- You need an [Azure subscription][azure_sub] to use this package.
- An existing Cognitive Services Anomaly Detector instance.

### Install the package

```bash
python -m pip install azure-ai-anomalydetector
```

> Note: This version of the client library defaults to the `3.0.0b6` version of the service.

This table shows the relationship between SDK versions and supported API versions of the service:

|SDK version|Supported API version of service |
|-------------|---------------|
|3.0.0b6 | 1.1|
|3.0.0b4, 3.0.0b5| 1.1-preview-1|
|3.0.0b3 | 1.1-preview|
|3.0.0b1, 3.0.0b2  | 1.0 |

### Authenticate the client

#### Get the endpoint

You can find the endpoint for your Anomaly Detector service resource using the
[Azure Portal](https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesAnomalyDetector)
or [Azure CLI](https://learn.microsoft.com/cli/azure/):

```bash
# Get the endpoint for the Anomaly Detector service resource
az cognitiveservices account show --name "resource-name" --resource-group "resource-group-name" --query "properties.endpoint"
```

#### Get the API Key

You can get the **API Key** from the Anomaly Detector service resource in the Azure Portal.
Alternatively, you can use **Azure CLI** snippet below to get the API key of your resource.

```PowerShell
az cognitiveservices account keys list --resource-group <your-resource-group-name> --name <your-resource-name>
```

#### Create a AnomalyDetectorClient with an API Key Credential

Once you have the value for the API key, you can pass it as a string into an instance of **AzureKeyCredential**. Use the key as the credential parameter
to authenticate the client:

```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.anomalydetector import AnomalyDetectorClient

credential = AzureKeyCredential("<api_key>")
client = AnomalyDetectorClient(endpoint="https://<resource-name>.cognitiveservices.azure.com/", credential=credential)
```

## Key concepts

With the Anomaly Detector, you can either detect anomalies in one variable using **Univariate Anomaly Detection**, or detect anomalies in multiple variables with **Multivariate Anomaly Detection**.

|Feature  |Description  |
|---------|---------|
|Univariate Anomaly Detection | Detect anomalies in one variable, like revenue, cost, etc. The model was selected automatically based on your data pattern. |
|Multivariate Anomaly Detection| Detect anomalies in multiple variables with correlations, which are usually gathered from equipment or other complex system. The underlying model used is Graph attention network.|

### Univariate Anomaly Detection

The Univariate Anomaly Detection API enables you to monitor and detect abnormalities in your time series data without having to know machine learning. The algorithms adapt by automatically identifying and applying the best-fitting models to your data, regardless of industry, scenario, or data volume. Using your time series data, the API determines boundaries for anomaly detection, expected values, and which data points are anomalies.

Using the Anomaly Detector doesn't require any prior experience in machine learning, and the REST API enables you to easily integrate the service into your applications and processes.

With the Univariate Anomaly Detection, you can automatically detect anomalies throughout your time series data, or as they occur in real-time.

|Feature  |Description  |
|---------|---------|
| Streaming detection| Detect anomalies in your streaming data by using previously seen data points to determine if your latest one is an anomaly. This operation generates a model using the data points you send, and determines if the target point is an anomaly. By calling the API with each new data point you generate, you can monitor your data as it's created. |
| Batch detection | Use your time series to detect any anomalies that might exist throughout your data. This operation generates a model using your entire time series data, with each point analyzed with the same model.         |
| Change points detection | Use your time series to detect any trend change points that exist in your data. This operation generates a model using your entire time series data, with each point analyzed with the same model.    |

### Multivariate Anomaly Detection

The **Multivariate Anomaly Detection** APIs further enable developers by easily integrating advanced AI for detecting anomalies from groups of metrics, without the need for machine learning knowledge or labeled data. Dependencies and inter-correlations between up to 300 different signals are now automatically counted as key factors. This new capability helps you to proactively protect your complex systems such as software applications, servers, factory machines, spacecraft, or even your business, from failures.

With the Multivariate Anomaly Detection, you can automatically detect anomalies throughout your time series data, or as they occur in real-time. There are three processes to use Multivariate Anomaly Detection.

- **Training**: Use Train Model API to create and train a model, then use Get Model Status API to get the status and model metadata.
- **Inference**:
  - Use Async Inference API to trigger an asynchronous inference process and use Get Inference results API to get detection results on a batch of data.
  - You could also use Sync Inference API to trigger a detection on one timestamp every time.
- **Other operations**: List Model API and Delete Model API are supported in Multivariate Anomaly Detection model for model management.

### Thread safety

We guarantee that all client instance methods are thread-safe and independent of each other ([guideline](https://azure.github.io/azure-sdk/dotnet_introduction.html#dotnet-service-methods-thread-safety)). This ensures that the recommendation of reusing client instances is always safe, even across threads.

## Examples

The following section provides several code snippets covering some of the most common Anomaly Detector service tasks, including:

- [Univariate Anomaly Detection - Batch detection](#batch-detection)
- [Univariate Anomaly Detection - Streaming detection](#streaming-detection)
- [Univariate Anomaly Detection - Detect change points](#detect-change-points)
- [Multivariate Anomaly Detection](#multivariate-anomaly-detection-sample)

### Batch detection

```python
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.core.credentials import AzureKeyCredential
from azure.ai.anomalydetector.models import *


SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
TIME_SERIES_DATA_PATH = os.path.join("sample_data", "request-data.csv")
client = AnomalyDetectorClient(ANOMALY_DETECTOR_ENDPOINT, AzureKeyCredential(SUBSCRIPTION_KEY))

series = []
data_file = pd.read_csv(TIME_SERIES_DATA_PATH, header=None, encoding="utf-8", parse_dates=[0])
for index, row in data_file.iterrows():
    series.append(TimeSeriesPoint(timestamp=row[0], value=row[1]))

request = UnivariateDetectionOptions(
    series=series,
    granularity=TimeGranularity.DAILY,
)


if any(response.is_anomaly):
    print("An anomaly was detected at index:")
    for i, value in enumerate(response.is_anomaly):
        if value:
            print(i)
else:
    print("No anomalies were detected in the time series.")

```

### Streaming Detection

```python
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.core.credentials import AzureKeyCredential
from azure.ai.anomalydetector.models import *


SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
TIME_SERIES_DATA_PATH = os.path.join("sample_data", "request-data.csv")
client = AnomalyDetectorClient(ANOMALY_DETECTOR_ENDPOINT, AzureKeyCredential(SUBSCRIPTION_KEY))

series = []
data_file = pd.read_csv(TIME_SERIES_DATA_PATH, header=None, encoding="utf-8", parse_dates=[0])
for index, row in data_file.iterrows():
    series.append(TimeSeriesPoint(timestamp=row[0], value=row[1]))

request = UnivariateDetectionOptions(
    series=series,
    granularity=TimeGranularity.DAILY,
)
print("Detecting the anomaly status of the latest data point.")

if response.is_anomaly:
    print("The latest point is detected as anomaly.")
else:
    print("The latest point is not detected as anomaly.")
```

### Detect change points

```python
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.core.credentials import AzureKeyCredential
from azure.ai.anomalydetector.models import *


SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
TIME_SERIES_DATA_PATH = os.path.join("sample_data", "request-data.csv")
client = AnomalyDetectorClient(ANOMALY_DETECTOR_ENDPOINT, AzureKeyCredential(SUBSCRIPTION_KEY))

series = []
data_file = pd.read_csv(TIME_SERIES_DATA_PATH, header=None, encoding="utf-8", parse_dates=[0])
for index, row in data_file.iterrows():
    series.append(TimeSeriesPoint(timestamp=row[0], value=row[1]))

request = UnivariateChangePointDetectionOptions(
    series=series,
    granularity=TimeGranularity.DAILY,
)


if any(response.is_change_point):
    print("An change point was detected at index:")
    for i, value in enumerate(response.is_change_point):
        if value:
            print(i)
else:
    print("No change point were detected in the time series.")

```

### Multivariate Anomaly Detection Sample

To see how to use Anomaly Detector library to conduct Multivariate Anomaly Detection, see this [sample](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_multivariate_detect.py).

To get more details of Anomaly Detector package, refer to this [azure.ai.anomalydetector package](https://azuresdkdocs.blob.core.windows.net/$web/python/azure-ai-anomalydetector/latest/azure.ai.anomalydetector.html#).

## Troubleshooting

### General

Anomaly Detector client library will raise exceptions defined in [Azure Core](https://azuresdkdocs.blob.core.windows.net/$web/python/azure-core/latest/azure.core.html#module-azure.core.exceptions).

### Logging

This library uses the standard [logging](https://docs.python.org/3/library/logging.html) library for logging.

Basic information about HTTP sessions (URLs, headers, etc.) is logged at `INFO` level.

Detailed `DEBUG` level logging, including request/response bodies and **unredacted**
headers, can be enabled on the client or per-operation with the `logging_enable` keyword argument.

See full SDK logging documentation with examples [here](https://learn.microsoft.com/azure/developer/python/sdk/azure-sdk-logging).

### Optional Configuration

Optional keyword arguments can be passed in at the client and per-operation level.
The azure-core [reference documentation](https://azuresdkdocs.blob.core.windows.net/$web/python/azure-core/latest/azure.core.html) describes available configurations for retries, logging, transport protocols, and more.

## Next steps

These code samples show common scenario operations with the Azure Anomaly Detector library. More samples can be found under the [samples](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/) directory.

- Univariate Anomaly Detection - Batch Detection: [sample_detect_entire_series_anomaly.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_detect_entire_series_anomaly.py)

- Univariate Anomaly Detection - Streaming Detection: [sample_detect_last_point_anomaly.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_detect_last_point_anomaly.py)

- Univariate Anomaly Detection - Change Point Detection: [sample_detect_change_point.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_detect_change_point.py)

- Multivariate Anomaly Detection: [sample_multivariate_detect.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_multivariate_detect.py)

### Additional documentation

For more extensive documentation on Azure Anomaly Detector, see the [Anomaly Detector documentation](https://learn.microsoft.com/azure/cognitive-services/anomaly-detector/overview) on docs.microsoft.com.

## Contributing

This project welcomes contributions and suggestions. Most contributions require
you to agree to a Contributor License Agreement (CLA) declaring that you have
the right to, and actually do, grant us the rights to use your contribution.
For details, visit [CLA homepage](https://cla.microsoft.com).

When you submit a pull request, a CLA-bot will automatically determine whether
you need to provide a CLA and decorate the PR appropriately (e.g., label,
comment). Simply follow the instructions provided by the bot. You will only
need to do this once across all repos using our CLA.

This project has adopted the
[Microsoft Open Source Code of Conduct][code_of_conduct]. For more information,
see the Code of Conduct FAQ or contact opencode@microsoft.com with any
additional questions or comments.

<!-- LINKS -->
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[azure_sub]: https://azure.microsoft.com/free/


%package help
Summary:	Development documents and examples for azure-ai-anomalydetector
Provides:	python3-azure-ai-anomalydetector-doc
%description help
# Cognitive Services Anomaly Detector client library for Python

[Anomaly Detector](https://learn.microsoft.com/azure/cognitive-services/Anomaly-Detector/overview) is an AI service with a set of APIs, which enables you to monitor and detect anomalies in your time series data with little machine learning (ML) knowledge, either batch validation or real-time inference.

## Getting started

### Prerequisites

- Python 3.7 or later is required to use this package.
- You need an [Azure subscription][azure_sub] to use this package.
- An existing Cognitive Services Anomaly Detector instance.

### Install the package

```bash
python -m pip install azure-ai-anomalydetector
```

> Note: This version of the client library defaults to the `3.0.0b6` version of the service.

This table shows the relationship between SDK versions and supported API versions of the service:

|SDK version|Supported API version of service |
|-------------|---------------|
|3.0.0b6 | 1.1|
|3.0.0b4, 3.0.0b5| 1.1-preview-1|
|3.0.0b3 | 1.1-preview|
|3.0.0b1, 3.0.0b2  | 1.0 |

### Authenticate the client

#### Get the endpoint

You can find the endpoint for your Anomaly Detector service resource using the
[Azure Portal](https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesAnomalyDetector)
or [Azure CLI](https://learn.microsoft.com/cli/azure/):

```bash
# Get the endpoint for the Anomaly Detector service resource
az cognitiveservices account show --name "resource-name" --resource-group "resource-group-name" --query "properties.endpoint"
```

#### Get the API Key

You can get the **API Key** from the Anomaly Detector service resource in the Azure Portal.
Alternatively, you can use **Azure CLI** snippet below to get the API key of your resource.

```PowerShell
az cognitiveservices account keys list --resource-group <your-resource-group-name> --name <your-resource-name>
```

#### Create a AnomalyDetectorClient with an API Key Credential

Once you have the value for the API key, you can pass it as a string into an instance of **AzureKeyCredential**. Use the key as the credential parameter
to authenticate the client:

```python
from azure.core.credentials import AzureKeyCredential
from azure.ai.anomalydetector import AnomalyDetectorClient

credential = AzureKeyCredential("<api_key>")
client = AnomalyDetectorClient(endpoint="https://<resource-name>.cognitiveservices.azure.com/", credential=credential)
```

## Key concepts

With the Anomaly Detector, you can either detect anomalies in one variable using **Univariate Anomaly Detection**, or detect anomalies in multiple variables with **Multivariate Anomaly Detection**.

|Feature  |Description  |
|---------|---------|
|Univariate Anomaly Detection | Detect anomalies in one variable, like revenue, cost, etc. The model was selected automatically based on your data pattern. |
|Multivariate Anomaly Detection| Detect anomalies in multiple variables with correlations, which are usually gathered from equipment or other complex system. The underlying model used is Graph attention network.|

### Univariate Anomaly Detection

The Univariate Anomaly Detection API enables you to monitor and detect abnormalities in your time series data without having to know machine learning. The algorithms adapt by automatically identifying and applying the best-fitting models to your data, regardless of industry, scenario, or data volume. Using your time series data, the API determines boundaries for anomaly detection, expected values, and which data points are anomalies.

Using the Anomaly Detector doesn't require any prior experience in machine learning, and the REST API enables you to easily integrate the service into your applications and processes.

With the Univariate Anomaly Detection, you can automatically detect anomalies throughout your time series data, or as they occur in real-time.

|Feature  |Description  |
|---------|---------|
| Streaming detection| Detect anomalies in your streaming data by using previously seen data points to determine if your latest one is an anomaly. This operation generates a model using the data points you send, and determines if the target point is an anomaly. By calling the API with each new data point you generate, you can monitor your data as it's created. |
| Batch detection | Use your time series to detect any anomalies that might exist throughout your data. This operation generates a model using your entire time series data, with each point analyzed with the same model.         |
| Change points detection | Use your time series to detect any trend change points that exist in your data. This operation generates a model using your entire time series data, with each point analyzed with the same model.    |

### Multivariate Anomaly Detection

The **Multivariate Anomaly Detection** APIs further enable developers by easily integrating advanced AI for detecting anomalies from groups of metrics, without the need for machine learning knowledge or labeled data. Dependencies and inter-correlations between up to 300 different signals are now automatically counted as key factors. This new capability helps you to proactively protect your complex systems such as software applications, servers, factory machines, spacecraft, or even your business, from failures.

With the Multivariate Anomaly Detection, you can automatically detect anomalies throughout your time series data, or as they occur in real-time. There are three processes to use Multivariate Anomaly Detection.

- **Training**: Use Train Model API to create and train a model, then use Get Model Status API to get the status and model metadata.
- **Inference**:
  - Use Async Inference API to trigger an asynchronous inference process and use Get Inference results API to get detection results on a batch of data.
  - You could also use Sync Inference API to trigger a detection on one timestamp every time.
- **Other operations**: List Model API and Delete Model API are supported in Multivariate Anomaly Detection model for model management.

### Thread safety

We guarantee that all client instance methods are thread-safe and independent of each other ([guideline](https://azure.github.io/azure-sdk/dotnet_introduction.html#dotnet-service-methods-thread-safety)). This ensures that the recommendation of reusing client instances is always safe, even across threads.

## Examples

The following section provides several code snippets covering some of the most common Anomaly Detector service tasks, including:

- [Univariate Anomaly Detection - Batch detection](#batch-detection)
- [Univariate Anomaly Detection - Streaming detection](#streaming-detection)
- [Univariate Anomaly Detection - Detect change points](#detect-change-points)
- [Multivariate Anomaly Detection](#multivariate-anomaly-detection-sample)

### Batch detection

```python
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.core.credentials import AzureKeyCredential
from azure.ai.anomalydetector.models import *


SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
TIME_SERIES_DATA_PATH = os.path.join("sample_data", "request-data.csv")
client = AnomalyDetectorClient(ANOMALY_DETECTOR_ENDPOINT, AzureKeyCredential(SUBSCRIPTION_KEY))

series = []
data_file = pd.read_csv(TIME_SERIES_DATA_PATH, header=None, encoding="utf-8", parse_dates=[0])
for index, row in data_file.iterrows():
    series.append(TimeSeriesPoint(timestamp=row[0], value=row[1]))

request = UnivariateDetectionOptions(
    series=series,
    granularity=TimeGranularity.DAILY,
)


if any(response.is_anomaly):
    print("An anomaly was detected at index:")
    for i, value in enumerate(response.is_anomaly):
        if value:
            print(i)
else:
    print("No anomalies were detected in the time series.")

```

### Streaming Detection

```python
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.core.credentials import AzureKeyCredential
from azure.ai.anomalydetector.models import *


SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
TIME_SERIES_DATA_PATH = os.path.join("sample_data", "request-data.csv")
client = AnomalyDetectorClient(ANOMALY_DETECTOR_ENDPOINT, AzureKeyCredential(SUBSCRIPTION_KEY))

series = []
data_file = pd.read_csv(TIME_SERIES_DATA_PATH, header=None, encoding="utf-8", parse_dates=[0])
for index, row in data_file.iterrows():
    series.append(TimeSeriesPoint(timestamp=row[0], value=row[1]))

request = UnivariateDetectionOptions(
    series=series,
    granularity=TimeGranularity.DAILY,
)
print("Detecting the anomaly status of the latest data point.")

if response.is_anomaly:
    print("The latest point is detected as anomaly.")
else:
    print("The latest point is not detected as anomaly.")
```

### Detect change points

```python
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.core.credentials import AzureKeyCredential
from azure.ai.anomalydetector.models import *


SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
TIME_SERIES_DATA_PATH = os.path.join("sample_data", "request-data.csv")
client = AnomalyDetectorClient(ANOMALY_DETECTOR_ENDPOINT, AzureKeyCredential(SUBSCRIPTION_KEY))

series = []
data_file = pd.read_csv(TIME_SERIES_DATA_PATH, header=None, encoding="utf-8", parse_dates=[0])
for index, row in data_file.iterrows():
    series.append(TimeSeriesPoint(timestamp=row[0], value=row[1]))

request = UnivariateChangePointDetectionOptions(
    series=series,
    granularity=TimeGranularity.DAILY,
)


if any(response.is_change_point):
    print("An change point was detected at index:")
    for i, value in enumerate(response.is_change_point):
        if value:
            print(i)
else:
    print("No change point were detected in the time series.")

```

### Multivariate Anomaly Detection Sample

To see how to use Anomaly Detector library to conduct Multivariate Anomaly Detection, see this [sample](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_multivariate_detect.py).

To get more details of Anomaly Detector package, refer to this [azure.ai.anomalydetector package](https://azuresdkdocs.blob.core.windows.net/$web/python/azure-ai-anomalydetector/latest/azure.ai.anomalydetector.html#).

## Troubleshooting

### General

Anomaly Detector client library will raise exceptions defined in [Azure Core](https://azuresdkdocs.blob.core.windows.net/$web/python/azure-core/latest/azure.core.html#module-azure.core.exceptions).

### Logging

This library uses the standard [logging](https://docs.python.org/3/library/logging.html) library for logging.

Basic information about HTTP sessions (URLs, headers, etc.) is logged at `INFO` level.

Detailed `DEBUG` level logging, including request/response bodies and **unredacted**
headers, can be enabled on the client or per-operation with the `logging_enable` keyword argument.

See full SDK logging documentation with examples [here](https://learn.microsoft.com/azure/developer/python/sdk/azure-sdk-logging).

### Optional Configuration

Optional keyword arguments can be passed in at the client and per-operation level.
The azure-core [reference documentation](https://azuresdkdocs.blob.core.windows.net/$web/python/azure-core/latest/azure.core.html) describes available configurations for retries, logging, transport protocols, and more.

## Next steps

These code samples show common scenario operations with the Azure Anomaly Detector library. More samples can be found under the [samples](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/) directory.

- Univariate Anomaly Detection - Batch Detection: [sample_detect_entire_series_anomaly.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_detect_entire_series_anomaly.py)

- Univariate Anomaly Detection - Streaming Detection: [sample_detect_last_point_anomaly.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_detect_last_point_anomaly.py)

- Univariate Anomaly Detection - Change Point Detection: [sample_detect_change_point.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_detect_change_point.py)

- Multivariate Anomaly Detection: [sample_multivariate_detect.py](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/anomalydetector/azure-ai-anomalydetector/samples/sample_multivariate_detect.py)

### Additional documentation

For more extensive documentation on Azure Anomaly Detector, see the [Anomaly Detector documentation](https://learn.microsoft.com/azure/cognitive-services/anomaly-detector/overview) on docs.microsoft.com.

## Contributing

This project welcomes contributions and suggestions. Most contributions require
you to agree to a Contributor License Agreement (CLA) declaring that you have
the right to, and actually do, grant us the rights to use your contribution.
For details, visit [CLA homepage](https://cla.microsoft.com).

When you submit a pull request, a CLA-bot will automatically determine whether
you need to provide a CLA and decorate the PR appropriately (e.g., label,
comment). Simply follow the instructions provided by the bot. You will only
need to do this once across all repos using our CLA.

This project has adopted the
[Microsoft Open Source Code of Conduct][code_of_conduct]. For more information,
see the Code of Conduct FAQ or contact opencode@microsoft.com with any
additional questions or comments.

<!-- LINKS -->
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[azure_sub]: https://azure.microsoft.com/free/


%prep
%autosetup -n azure-ai-anomalydetector-3.0.0b6

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-azure-ai-anomalydetector -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 3.0.0b6-1
- Package Spec generated