summaryrefslogtreecommitdiff
path: root/python-azure-storage-file-datalake.spec
blob: 0e5e5789916b62bb170421c7d3b7d157e9bc511c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
%global _empty_manifest_terminate_build 0
Name:		python-azure-storage-file-datalake
Version:	12.10.1
Release:	1
Summary:	Microsoft Azure File DataLake Storage Client Library for Python
License:	MIT License
URL:		https://github.com/Azure/azure-sdk-for-python
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/b5/7d/f9437ece504fdb07fded73abce07befa5e07dbd642a31f3822f07b5d8319/azure-storage-file-datalake-12.10.1.zip
BuildArch:	noarch

Requires:	python3-azure-core
Requires:	python3-azure-storage-blob
Requires:	python3-typing-extensions
Requires:	python3-isodate
Requires:	python3-azure-core[aio]

%description
# Azure DataLake service client library for Python
Overview

This preview package for Python includes ADLS Gen2 specific API support made available in Storage SDK. This includes:
1. New directory level operations (Create, Rename, Delete) for hierarchical namespace enabled (HNS) storage account. For HNS enabled accounts, the rename/move operations are atomic.
2. Permission related operations (Get/Set ACLs) for hierarchical namespace enabled (HNS) accounts.


[Source code](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake) | [Package (PyPi)](https://pypi.org/project/azure-storage-file-datalake/) | [API reference documentation](https://aka.ms/azsdk-python-storage-filedatalake-ref) | [Product documentation](https://docs.microsoft.com/azure/storage/) | [Samples](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/samples)


## Getting started

### Prerequisites
* Python 3.7 or later is required to use this package. For more details, please read our page on [Azure SDK for Python version support policy](https://github.com/Azure/azure-sdk-for-python/wiki/Azure-SDKs-Python-version-support-policy).
* You must have an [Azure subscription](https://azure.microsoft.com/free/) and an
[Azure storage account](https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-quickstart-create-account) to use this package.

### Install the package
Install the Azure DataLake Storage client library for Python with [pip](https://pypi.org/project/pip/):

```bash
pip install azure-storage-file-datalake --pre
```

### Create a storage account
If you wish to create a new storage account, you can use the
[Azure Portal](https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-quickstart-create-account#create-an-account-using-the-azure-portal),
[Azure PowerShell](https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-quickstart-create-account#create-an-account-using-powershell),
or [Azure CLI](https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-quickstart-create-account#create-an-account-using-azure-cli):

```bash
# Create a new resource group to hold the storage account -
# if using an existing resource group, skip this step
az group create --name my-resource-group --location westus2

# Install the extension 'Storage-Preview'
az extension add --name storage-preview

# Create the storage account
az storage account create --name my-storage-account-name --resource-group my-resource-group --sku Standard_LRS --kind StorageV2 --hierarchical-namespace true
```

### Authenticate the client

Interaction with DataLake Storage starts with an instance of the DataLakeServiceClient class. You need an existing storage account, its URL, and a credential to instantiate the client object.

#### Get credentials

To authenticate the client you have a few options:
1. Use a SAS token string
2. Use an account shared access key
3. Use a token credential from [azure.identity](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity)

Alternatively, you can authenticate with a storage connection string using the `from_connection_string` method. See example: [Client creation with a connection string](#client-creation-with-a-connection-string).

You can omit the credential if your account URL already has a SAS token.

#### Create client

Once you have your account URL and credentials ready, you can create the DataLakeServiceClient:

```python
from azure.storage.filedatalake import DataLakeServiceClient

service = DataLakeServiceClient(account_url="https://<my-storage-account-name>.dfs.core.windows.net/", credential=credential)
```

## Key concepts

DataLake storage offers four types of resources:
* The storage account
* A file system in the storage account
* A directory under the file system
* A file in a the file system or under directory

### Async Clients 
This library includes a complete async API supported on Python 3.5+. To use it, you must
first install an async transport, such as [aiohttp](https://pypi.org/project/aiohttp/).
See
[azure-core documentation](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/CLIENT_LIBRARY_DEVELOPER.md#transport)
for more information.

Async clients and credentials should be closed when they're no longer needed. These
objects are async context managers and define async `close` methods.

#### Clients

The DataLake Storage SDK provides four different clients to interact with the DataLake Service:
1. **DataLakeServiceClient** - this client interacts with the DataLake Service at the account level.
    It provides operations to retrieve and configure the account properties
    as well as list, create, and delete file systems within the account.
    For operations relating to a specific file system, directory or file, clients for those entities
    can also be retrieved using the `get_file_client`, `get_directory_client` or `get_file_system_client` functions.
2. **FileSystemClient** - this client represents interaction with a specific
    file system, even if that file system does not exist yet. It provides operations to create, delete, or
    configure file systems and includes operations to list paths under file system, upload, and delete file or
    directory in the file system.
    For operations relating to a specific file, the client can also be retrieved using
    the `get_file_client` function.
    For operations relating to a specific directory, the client can be retrieved using
    the `get_directory_client` function.
3. **DataLakeDirectoryClient** - this client represents interaction with a specific
    directory, even if that directory does not exist yet. It provides directory operations create, delete, rename,
    get properties and set properties operations.
3. **DataLakeFileClient** - this client represents interaction with a specific
    file, even if that file does not exist yet. It provides file operations to append data, flush data, delete,
    create, and read file.
4. **DataLakeLeaseClient** - this client represents lease interactions with a FileSystemClient, DataLakeDirectoryClient
    or DataLakeFileClient. It provides operations to acquire, renew, release, change, and break leases on the resources.

## Examples

The following sections provide several code snippets covering some of the most common Storage DataLake tasks, including:

* [Client creation with a connection string](#client-creation-with-a-connection-string)
* [Uploading a file](#uploading-a-file)
* [Downloading a file](#downloading-a-file)
* [Enumerating paths](#enumerating-paths)


### Client creation with a connection string
Create the DataLakeServiceClient using the connection string to your Azure Storage account.

```python
from azure.storage.filedatalake import DataLakeServiceClient

service = DataLakeServiceClient.from_connection_string(conn_str="my_connection_string")
```

### Uploading a file
Upload a file to your file system.

```python
from azure.storage.filedatalake import DataLakeFileClient

data = b"abc"
file = DataLakeFileClient.from_connection_string("my_connection_string",
                                                 file_system_name="myfilesystem", file_path="myfile")
file.create_file ()
file.append_data(data, offset=0, length=len(data))
file.flush_data(len(data))
```

### Downloading a file
Download a file from your file system.

```python
from azure.storage.filedatalake import DataLakeFileClient

file = DataLakeFileClient.from_connection_string("my_connection_string",
                                                 file_system_name="myfilesystem", file_path="myfile")

with open("./BlockDestination.txt", "wb") as my_file:
    download = file.download_file()
    download.readinto(my_file)
```

### Enumerating paths
List the paths in your file system.

```python
from azure.storage.filedatalake import FileSystemClient

file_system = FileSystemClient.from_connection_string("my_connection_string", file_system_name="myfilesystem")

paths = file_system.get_paths()
for path in paths:
    print(path.name + '\n')
```

## Optional Configuration

Optional keyword arguments that can be passed in at the client and per-operation level.

### Retry Policy configuration

Use the following keyword arguments when instantiating a client to configure the retry policy:

* __retry_total__ (int): Total number of retries to allow. Takes precedence over other counts.
Pass in `retry_total=0` if you do not want to retry on requests. Defaults to 10.
* __retry_connect__ (int): How many connection-related errors to retry on. Defaults to 3.
* __retry_read__ (int): How many times to retry on read errors. Defaults to 3.
* __retry_status__ (int): How many times to retry on bad status codes. Defaults to 3.
* __retry_to_secondary__ (bool): Whether the request should be retried to secondary, if able.
This should only be enabled of RA-GRS accounts are used and potentially stale data can be handled.
Defaults to `False`.

### Other client / per-operation configuration

Other optional configuration keyword arguments that can be specified on the client or per-operation.

**Client keyword arguments:**

* __connection_timeout__ (int): The number of seconds the client will wait to establish a connection to the server.
Defaults to 20 seconds.
* __read_timeout__ (int): The number of seconds the client will wait, between consecutive read operations, for a
response from the server. This is a socket level timeout and is not affected by overall data size. Client-side read 
timeouts will be automatically retried. Defaults to 60 seconds.
* __transport__ (Any): User-provided transport to send the HTTP request.

**Per-operation keyword arguments:**

* __raw_response_hook__ (callable): The given callback uses the response returned from the service.
* __raw_request_hook__ (callable): The given callback uses the request before being sent to service.
* __client_request_id__ (str): Optional user specified identification of the request.
* __user_agent__ (str): Appends the custom value to the user-agent header to be sent with the request.
* __logging_enable__ (bool): Enables logging at the DEBUG level. Defaults to False. Can also be passed in at
the client level to enable it for all requests.
* __logging_body__ (bool): Enables logging the request and response body. Defaults to False. Can also be passed in at
the client level to enable it for all requests.
* __headers__ (dict): Pass in custom headers as key, value pairs. E.g. `headers={'CustomValue': value}`

## Troubleshooting
### General
DataLake Storage clients raise exceptions defined in [Azure Core](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md).

This list can be used for reference to catch thrown exceptions. To get the specific error code of the exception, use the `error_code` attribute, i.e, `exception.error_code`.

### Logging
This library uses the standard
[logging](https://docs.python.org/3/library/logging.html) library for logging.
Basic information about HTTP sessions (URLs, headers, etc.) is logged at INFO
level.

Detailed DEBUG level logging, including request/response bodies and unredacted
headers, can be enabled on a client with the `logging_enable` argument:
```python
import sys
import logging
from azure.storage.filedatalake import DataLakeServiceClient

# Create a logger for the 'azure.storage.filedatalake' SDK
logger = logging.getLogger('azure.storage')
logger.setLevel(logging.DEBUG)

# Configure a console output
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)

# This client will log detailed information about its HTTP sessions, at DEBUG level
service_client = DataLakeServiceClient.from_connection_string("your_connection_string", logging_enable=True)
```

Similarly, `logging_enable` can enable detailed logging for a single operation,
even when it isn't enabled for the client:
```py
service_client.list_file_systems(logging_enable=True)
```

## Next steps

### More sample code

Get started with our [Azure DataLake samples](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/samples).

Several DataLake Storage Python SDK samples are available to you in the SDK's GitHub repository. These samples provide example code for additional scenarios commonly encountered while working with DataLake Storage:

* [`datalake_samples_access_control.py`](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/samples/datalake_samples_access_control.py) - Examples for common DataLake Storage tasks:
    * Set up a file system
    * Create a directory
    * Set/Get access control for the directory
    * Create files under the directory
    * Set/Get access control for each file
    * Delete file system

* [`datalake_samples_upload_download.py`](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/samples/datalake_samples_upload_download.py) - Examples for common DataLake Storage tasks:
    * Set up a file system
    * Create file
    * Append data to the file
    * Flush data to the file
    * Download the uploaded data
    * Delete file system


### Additional documentation

Table for [ADLS Gen1 to ADLS Gen2 API Mapping](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/storage/azure-storage-file-datalake/GEN1_GEN2_MAPPING.md)
For more extensive REST documentation on Data Lake Storage Gen2, see the [Data Lake Storage Gen2 documentation](https://docs.microsoft.com/rest/api/storageservices/datalakestoragegen2/filesystem) on docs.microsoft.com.


## Contributing
This project welcomes contributions and suggestions.  Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.


%package -n python3-azure-storage-file-datalake
Summary:	Microsoft Azure File DataLake Storage Client Library for Python
Provides:	python-azure-storage-file-datalake
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-azure-storage-file-datalake
# Azure DataLake service client library for Python
Overview

This preview package for Python includes ADLS Gen2 specific API support made available in Storage SDK. This includes:
1. New directory level operations (Create, Rename, Delete) for hierarchical namespace enabled (HNS) storage account. For HNS enabled accounts, the rename/move operations are atomic.
2. Permission related operations (Get/Set ACLs) for hierarchical namespace enabled (HNS) accounts.


[Source code](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake) | [Package (PyPi)](https://pypi.org/project/azure-storage-file-datalake/) | [API reference documentation](https://aka.ms/azsdk-python-storage-filedatalake-ref) | [Product documentation](https://docs.microsoft.com/azure/storage/) | [Samples](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/samples)


## Getting started

### Prerequisites
* Python 3.7 or later is required to use this package. For more details, please read our page on [Azure SDK for Python version support policy](https://github.com/Azure/azure-sdk-for-python/wiki/Azure-SDKs-Python-version-support-policy).
* You must have an [Azure subscription](https://azure.microsoft.com/free/) and an
[Azure storage account](https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-quickstart-create-account) to use this package.

### Install the package
Install the Azure DataLake Storage client library for Python with [pip](https://pypi.org/project/pip/):

```bash
pip install azure-storage-file-datalake --pre
```

### Create a storage account
If you wish to create a new storage account, you can use the
[Azure Portal](https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-quickstart-create-account#create-an-account-using-the-azure-portal),
[Azure PowerShell](https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-quickstart-create-account#create-an-account-using-powershell),
or [Azure CLI](https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-quickstart-create-account#create-an-account-using-azure-cli):

```bash
# Create a new resource group to hold the storage account -
# if using an existing resource group, skip this step
az group create --name my-resource-group --location westus2

# Install the extension 'Storage-Preview'
az extension add --name storage-preview

# Create the storage account
az storage account create --name my-storage-account-name --resource-group my-resource-group --sku Standard_LRS --kind StorageV2 --hierarchical-namespace true
```

### Authenticate the client

Interaction with DataLake Storage starts with an instance of the DataLakeServiceClient class. You need an existing storage account, its URL, and a credential to instantiate the client object.

#### Get credentials

To authenticate the client you have a few options:
1. Use a SAS token string
2. Use an account shared access key
3. Use a token credential from [azure.identity](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity)

Alternatively, you can authenticate with a storage connection string using the `from_connection_string` method. See example: [Client creation with a connection string](#client-creation-with-a-connection-string).

You can omit the credential if your account URL already has a SAS token.

#### Create client

Once you have your account URL and credentials ready, you can create the DataLakeServiceClient:

```python
from azure.storage.filedatalake import DataLakeServiceClient

service = DataLakeServiceClient(account_url="https://<my-storage-account-name>.dfs.core.windows.net/", credential=credential)
```

## Key concepts

DataLake storage offers four types of resources:
* The storage account
* A file system in the storage account
* A directory under the file system
* A file in a the file system or under directory

### Async Clients 
This library includes a complete async API supported on Python 3.5+. To use it, you must
first install an async transport, such as [aiohttp](https://pypi.org/project/aiohttp/).
See
[azure-core documentation](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/CLIENT_LIBRARY_DEVELOPER.md#transport)
for more information.

Async clients and credentials should be closed when they're no longer needed. These
objects are async context managers and define async `close` methods.

#### Clients

The DataLake Storage SDK provides four different clients to interact with the DataLake Service:
1. **DataLakeServiceClient** - this client interacts with the DataLake Service at the account level.
    It provides operations to retrieve and configure the account properties
    as well as list, create, and delete file systems within the account.
    For operations relating to a specific file system, directory or file, clients for those entities
    can also be retrieved using the `get_file_client`, `get_directory_client` or `get_file_system_client` functions.
2. **FileSystemClient** - this client represents interaction with a specific
    file system, even if that file system does not exist yet. It provides operations to create, delete, or
    configure file systems and includes operations to list paths under file system, upload, and delete file or
    directory in the file system.
    For operations relating to a specific file, the client can also be retrieved using
    the `get_file_client` function.
    For operations relating to a specific directory, the client can be retrieved using
    the `get_directory_client` function.
3. **DataLakeDirectoryClient** - this client represents interaction with a specific
    directory, even if that directory does not exist yet. It provides directory operations create, delete, rename,
    get properties and set properties operations.
3. **DataLakeFileClient** - this client represents interaction with a specific
    file, even if that file does not exist yet. It provides file operations to append data, flush data, delete,
    create, and read file.
4. **DataLakeLeaseClient** - this client represents lease interactions with a FileSystemClient, DataLakeDirectoryClient
    or DataLakeFileClient. It provides operations to acquire, renew, release, change, and break leases on the resources.

## Examples

The following sections provide several code snippets covering some of the most common Storage DataLake tasks, including:

* [Client creation with a connection string](#client-creation-with-a-connection-string)
* [Uploading a file](#uploading-a-file)
* [Downloading a file](#downloading-a-file)
* [Enumerating paths](#enumerating-paths)


### Client creation with a connection string
Create the DataLakeServiceClient using the connection string to your Azure Storage account.

```python
from azure.storage.filedatalake import DataLakeServiceClient

service = DataLakeServiceClient.from_connection_string(conn_str="my_connection_string")
```

### Uploading a file
Upload a file to your file system.

```python
from azure.storage.filedatalake import DataLakeFileClient

data = b"abc"
file = DataLakeFileClient.from_connection_string("my_connection_string",
                                                 file_system_name="myfilesystem", file_path="myfile")
file.create_file ()
file.append_data(data, offset=0, length=len(data))
file.flush_data(len(data))
```

### Downloading a file
Download a file from your file system.

```python
from azure.storage.filedatalake import DataLakeFileClient

file = DataLakeFileClient.from_connection_string("my_connection_string",
                                                 file_system_name="myfilesystem", file_path="myfile")

with open("./BlockDestination.txt", "wb") as my_file:
    download = file.download_file()
    download.readinto(my_file)
```

### Enumerating paths
List the paths in your file system.

```python
from azure.storage.filedatalake import FileSystemClient

file_system = FileSystemClient.from_connection_string("my_connection_string", file_system_name="myfilesystem")

paths = file_system.get_paths()
for path in paths:
    print(path.name + '\n')
```

## Optional Configuration

Optional keyword arguments that can be passed in at the client and per-operation level.

### Retry Policy configuration

Use the following keyword arguments when instantiating a client to configure the retry policy:

* __retry_total__ (int): Total number of retries to allow. Takes precedence over other counts.
Pass in `retry_total=0` if you do not want to retry on requests. Defaults to 10.
* __retry_connect__ (int): How many connection-related errors to retry on. Defaults to 3.
* __retry_read__ (int): How many times to retry on read errors. Defaults to 3.
* __retry_status__ (int): How many times to retry on bad status codes. Defaults to 3.
* __retry_to_secondary__ (bool): Whether the request should be retried to secondary, if able.
This should only be enabled of RA-GRS accounts are used and potentially stale data can be handled.
Defaults to `False`.

### Other client / per-operation configuration

Other optional configuration keyword arguments that can be specified on the client or per-operation.

**Client keyword arguments:**

* __connection_timeout__ (int): The number of seconds the client will wait to establish a connection to the server.
Defaults to 20 seconds.
* __read_timeout__ (int): The number of seconds the client will wait, between consecutive read operations, for a
response from the server. This is a socket level timeout and is not affected by overall data size. Client-side read 
timeouts will be automatically retried. Defaults to 60 seconds.
* __transport__ (Any): User-provided transport to send the HTTP request.

**Per-operation keyword arguments:**

* __raw_response_hook__ (callable): The given callback uses the response returned from the service.
* __raw_request_hook__ (callable): The given callback uses the request before being sent to service.
* __client_request_id__ (str): Optional user specified identification of the request.
* __user_agent__ (str): Appends the custom value to the user-agent header to be sent with the request.
* __logging_enable__ (bool): Enables logging at the DEBUG level. Defaults to False. Can also be passed in at
the client level to enable it for all requests.
* __logging_body__ (bool): Enables logging the request and response body. Defaults to False. Can also be passed in at
the client level to enable it for all requests.
* __headers__ (dict): Pass in custom headers as key, value pairs. E.g. `headers={'CustomValue': value}`

## Troubleshooting
### General
DataLake Storage clients raise exceptions defined in [Azure Core](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md).

This list can be used for reference to catch thrown exceptions. To get the specific error code of the exception, use the `error_code` attribute, i.e, `exception.error_code`.

### Logging
This library uses the standard
[logging](https://docs.python.org/3/library/logging.html) library for logging.
Basic information about HTTP sessions (URLs, headers, etc.) is logged at INFO
level.

Detailed DEBUG level logging, including request/response bodies and unredacted
headers, can be enabled on a client with the `logging_enable` argument:
```python
import sys
import logging
from azure.storage.filedatalake import DataLakeServiceClient

# Create a logger for the 'azure.storage.filedatalake' SDK
logger = logging.getLogger('azure.storage')
logger.setLevel(logging.DEBUG)

# Configure a console output
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)

# This client will log detailed information about its HTTP sessions, at DEBUG level
service_client = DataLakeServiceClient.from_connection_string("your_connection_string", logging_enable=True)
```

Similarly, `logging_enable` can enable detailed logging for a single operation,
even when it isn't enabled for the client:
```py
service_client.list_file_systems(logging_enable=True)
```

## Next steps

### More sample code

Get started with our [Azure DataLake samples](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/samples).

Several DataLake Storage Python SDK samples are available to you in the SDK's GitHub repository. These samples provide example code for additional scenarios commonly encountered while working with DataLake Storage:

* [`datalake_samples_access_control.py`](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/samples/datalake_samples_access_control.py) - Examples for common DataLake Storage tasks:
    * Set up a file system
    * Create a directory
    * Set/Get access control for the directory
    * Create files under the directory
    * Set/Get access control for each file
    * Delete file system

* [`datalake_samples_upload_download.py`](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/samples/datalake_samples_upload_download.py) - Examples for common DataLake Storage tasks:
    * Set up a file system
    * Create file
    * Append data to the file
    * Flush data to the file
    * Download the uploaded data
    * Delete file system


### Additional documentation

Table for [ADLS Gen1 to ADLS Gen2 API Mapping](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/storage/azure-storage-file-datalake/GEN1_GEN2_MAPPING.md)
For more extensive REST documentation on Data Lake Storage Gen2, see the [Data Lake Storage Gen2 documentation](https://docs.microsoft.com/rest/api/storageservices/datalakestoragegen2/filesystem) on docs.microsoft.com.


## Contributing
This project welcomes contributions and suggestions.  Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.


%package help
Summary:	Development documents and examples for azure-storage-file-datalake
Provides:	python3-azure-storage-file-datalake-doc
%description help
# Azure DataLake service client library for Python
Overview

This preview package for Python includes ADLS Gen2 specific API support made available in Storage SDK. This includes:
1. New directory level operations (Create, Rename, Delete) for hierarchical namespace enabled (HNS) storage account. For HNS enabled accounts, the rename/move operations are atomic.
2. Permission related operations (Get/Set ACLs) for hierarchical namespace enabled (HNS) accounts.


[Source code](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake) | [Package (PyPi)](https://pypi.org/project/azure-storage-file-datalake/) | [API reference documentation](https://aka.ms/azsdk-python-storage-filedatalake-ref) | [Product documentation](https://docs.microsoft.com/azure/storage/) | [Samples](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/samples)


## Getting started

### Prerequisites
* Python 3.7 or later is required to use this package. For more details, please read our page on [Azure SDK for Python version support policy](https://github.com/Azure/azure-sdk-for-python/wiki/Azure-SDKs-Python-version-support-policy).
* You must have an [Azure subscription](https://azure.microsoft.com/free/) and an
[Azure storage account](https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-quickstart-create-account) to use this package.

### Install the package
Install the Azure DataLake Storage client library for Python with [pip](https://pypi.org/project/pip/):

```bash
pip install azure-storage-file-datalake --pre
```

### Create a storage account
If you wish to create a new storage account, you can use the
[Azure Portal](https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-quickstart-create-account#create-an-account-using-the-azure-portal),
[Azure PowerShell](https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-quickstart-create-account#create-an-account-using-powershell),
or [Azure CLI](https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-quickstart-create-account#create-an-account-using-azure-cli):

```bash
# Create a new resource group to hold the storage account -
# if using an existing resource group, skip this step
az group create --name my-resource-group --location westus2

# Install the extension 'Storage-Preview'
az extension add --name storage-preview

# Create the storage account
az storage account create --name my-storage-account-name --resource-group my-resource-group --sku Standard_LRS --kind StorageV2 --hierarchical-namespace true
```

### Authenticate the client

Interaction with DataLake Storage starts with an instance of the DataLakeServiceClient class. You need an existing storage account, its URL, and a credential to instantiate the client object.

#### Get credentials

To authenticate the client you have a few options:
1. Use a SAS token string
2. Use an account shared access key
3. Use a token credential from [azure.identity](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity)

Alternatively, you can authenticate with a storage connection string using the `from_connection_string` method. See example: [Client creation with a connection string](#client-creation-with-a-connection-string).

You can omit the credential if your account URL already has a SAS token.

#### Create client

Once you have your account URL and credentials ready, you can create the DataLakeServiceClient:

```python
from azure.storage.filedatalake import DataLakeServiceClient

service = DataLakeServiceClient(account_url="https://<my-storage-account-name>.dfs.core.windows.net/", credential=credential)
```

## Key concepts

DataLake storage offers four types of resources:
* The storage account
* A file system in the storage account
* A directory under the file system
* A file in a the file system or under directory

### Async Clients 
This library includes a complete async API supported on Python 3.5+. To use it, you must
first install an async transport, such as [aiohttp](https://pypi.org/project/aiohttp/).
See
[azure-core documentation](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/CLIENT_LIBRARY_DEVELOPER.md#transport)
for more information.

Async clients and credentials should be closed when they're no longer needed. These
objects are async context managers and define async `close` methods.

#### Clients

The DataLake Storage SDK provides four different clients to interact with the DataLake Service:
1. **DataLakeServiceClient** - this client interacts with the DataLake Service at the account level.
    It provides operations to retrieve and configure the account properties
    as well as list, create, and delete file systems within the account.
    For operations relating to a specific file system, directory or file, clients for those entities
    can also be retrieved using the `get_file_client`, `get_directory_client` or `get_file_system_client` functions.
2. **FileSystemClient** - this client represents interaction with a specific
    file system, even if that file system does not exist yet. It provides operations to create, delete, or
    configure file systems and includes operations to list paths under file system, upload, and delete file or
    directory in the file system.
    For operations relating to a specific file, the client can also be retrieved using
    the `get_file_client` function.
    For operations relating to a specific directory, the client can be retrieved using
    the `get_directory_client` function.
3. **DataLakeDirectoryClient** - this client represents interaction with a specific
    directory, even if that directory does not exist yet. It provides directory operations create, delete, rename,
    get properties and set properties operations.
3. **DataLakeFileClient** - this client represents interaction with a specific
    file, even if that file does not exist yet. It provides file operations to append data, flush data, delete,
    create, and read file.
4. **DataLakeLeaseClient** - this client represents lease interactions with a FileSystemClient, DataLakeDirectoryClient
    or DataLakeFileClient. It provides operations to acquire, renew, release, change, and break leases on the resources.

## Examples

The following sections provide several code snippets covering some of the most common Storage DataLake tasks, including:

* [Client creation with a connection string](#client-creation-with-a-connection-string)
* [Uploading a file](#uploading-a-file)
* [Downloading a file](#downloading-a-file)
* [Enumerating paths](#enumerating-paths)


### Client creation with a connection string
Create the DataLakeServiceClient using the connection string to your Azure Storage account.

```python
from azure.storage.filedatalake import DataLakeServiceClient

service = DataLakeServiceClient.from_connection_string(conn_str="my_connection_string")
```

### Uploading a file
Upload a file to your file system.

```python
from azure.storage.filedatalake import DataLakeFileClient

data = b"abc"
file = DataLakeFileClient.from_connection_string("my_connection_string",
                                                 file_system_name="myfilesystem", file_path="myfile")
file.create_file ()
file.append_data(data, offset=0, length=len(data))
file.flush_data(len(data))
```

### Downloading a file
Download a file from your file system.

```python
from azure.storage.filedatalake import DataLakeFileClient

file = DataLakeFileClient.from_connection_string("my_connection_string",
                                                 file_system_name="myfilesystem", file_path="myfile")

with open("./BlockDestination.txt", "wb") as my_file:
    download = file.download_file()
    download.readinto(my_file)
```

### Enumerating paths
List the paths in your file system.

```python
from azure.storage.filedatalake import FileSystemClient

file_system = FileSystemClient.from_connection_string("my_connection_string", file_system_name="myfilesystem")

paths = file_system.get_paths()
for path in paths:
    print(path.name + '\n')
```

## Optional Configuration

Optional keyword arguments that can be passed in at the client and per-operation level.

### Retry Policy configuration

Use the following keyword arguments when instantiating a client to configure the retry policy:

* __retry_total__ (int): Total number of retries to allow. Takes precedence over other counts.
Pass in `retry_total=0` if you do not want to retry on requests. Defaults to 10.
* __retry_connect__ (int): How many connection-related errors to retry on. Defaults to 3.
* __retry_read__ (int): How many times to retry on read errors. Defaults to 3.
* __retry_status__ (int): How many times to retry on bad status codes. Defaults to 3.
* __retry_to_secondary__ (bool): Whether the request should be retried to secondary, if able.
This should only be enabled of RA-GRS accounts are used and potentially stale data can be handled.
Defaults to `False`.

### Other client / per-operation configuration

Other optional configuration keyword arguments that can be specified on the client or per-operation.

**Client keyword arguments:**

* __connection_timeout__ (int): The number of seconds the client will wait to establish a connection to the server.
Defaults to 20 seconds.
* __read_timeout__ (int): The number of seconds the client will wait, between consecutive read operations, for a
response from the server. This is a socket level timeout and is not affected by overall data size. Client-side read 
timeouts will be automatically retried. Defaults to 60 seconds.
* __transport__ (Any): User-provided transport to send the HTTP request.

**Per-operation keyword arguments:**

* __raw_response_hook__ (callable): The given callback uses the response returned from the service.
* __raw_request_hook__ (callable): The given callback uses the request before being sent to service.
* __client_request_id__ (str): Optional user specified identification of the request.
* __user_agent__ (str): Appends the custom value to the user-agent header to be sent with the request.
* __logging_enable__ (bool): Enables logging at the DEBUG level. Defaults to False. Can also be passed in at
the client level to enable it for all requests.
* __logging_body__ (bool): Enables logging the request and response body. Defaults to False. Can also be passed in at
the client level to enable it for all requests.
* __headers__ (dict): Pass in custom headers as key, value pairs. E.g. `headers={'CustomValue': value}`

## Troubleshooting
### General
DataLake Storage clients raise exceptions defined in [Azure Core](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md).

This list can be used for reference to catch thrown exceptions. To get the specific error code of the exception, use the `error_code` attribute, i.e, `exception.error_code`.

### Logging
This library uses the standard
[logging](https://docs.python.org/3/library/logging.html) library for logging.
Basic information about HTTP sessions (URLs, headers, etc.) is logged at INFO
level.

Detailed DEBUG level logging, including request/response bodies and unredacted
headers, can be enabled on a client with the `logging_enable` argument:
```python
import sys
import logging
from azure.storage.filedatalake import DataLakeServiceClient

# Create a logger for the 'azure.storage.filedatalake' SDK
logger = logging.getLogger('azure.storage')
logger.setLevel(logging.DEBUG)

# Configure a console output
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)

# This client will log detailed information about its HTTP sessions, at DEBUG level
service_client = DataLakeServiceClient.from_connection_string("your_connection_string", logging_enable=True)
```

Similarly, `logging_enable` can enable detailed logging for a single operation,
even when it isn't enabled for the client:
```py
service_client.list_file_systems(logging_enable=True)
```

## Next steps

### More sample code

Get started with our [Azure DataLake samples](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/samples).

Several DataLake Storage Python SDK samples are available to you in the SDK's GitHub repository. These samples provide example code for additional scenarios commonly encountered while working with DataLake Storage:

* [`datalake_samples_access_control.py`](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/samples/datalake_samples_access_control.py) - Examples for common DataLake Storage tasks:
    * Set up a file system
    * Create a directory
    * Set/Get access control for the directory
    * Create files under the directory
    * Set/Get access control for each file
    * Delete file system

* [`datalake_samples_upload_download.py`](https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/storage/azure-storage-file-datalake/samples/datalake_samples_upload_download.py) - Examples for common DataLake Storage tasks:
    * Set up a file system
    * Create file
    * Append data to the file
    * Flush data to the file
    * Download the uploaded data
    * Delete file system


### Additional documentation

Table for [ADLS Gen1 to ADLS Gen2 API Mapping](https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/storage/azure-storage-file-datalake/GEN1_GEN2_MAPPING.md)
For more extensive REST documentation on Data Lake Storage Gen2, see the [Data Lake Storage Gen2 documentation](https://docs.microsoft.com/rest/api/storageservices/datalakestoragegen2/filesystem) on docs.microsoft.com.


## Contributing
This project welcomes contributions and suggestions.  Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.


%prep
%autosetup -n azure-storage-file-datalake-12.10.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-azure-storage-file-datalake -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 12.10.1-1
- Package Spec generated