summaryrefslogtreecommitdiff
path: root/python-balrogo.spec
blob: 3685b531fcf1909756486fb5ffd0f8994f613a7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
%global _empty_manifest_terminate_build 0
Name:		python-balrogo
Version:	1.6.4
Release:	1
Summary:	Bayesian Astrometric Likelihood Recovery of Galactic Objects
License:	MIT
URL:		https://gitlab.com/eduardo-vitral/balrogo
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/d0/77/81ba47c57104dabb92a50f941da0c033d12b1d6b157ab1b7df928fefa62c/balrogo-1.6.4.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-matplotlib
Requires:	python3-astropy
Requires:	python3-scipy
Requires:	python3-shapely
Requires:	python3-emcee
Requires:	python3-numdifftools
Requires:	python3-importlib_metadata

%description
# BALRoGO

[![pipeline status](https://gitlab.com/eduardo-vitral/balrogo/badges/master/pipeline.svg)](https://gitlab.com/eduardo-vitral/balrogo/-/commits/master)
[![coverage report](https://gitlab.com/eduardo-vitral/balrogo/badges/master/coverage.svg)](https://gitlab.com/eduardo-vitral/balrogo/-/commits/master)
[![pypi](https://img.shields.io/pypi/v/balrogo.svg)](https://pypi.python.org/pypi/balrogo/)
[![python](https://img.shields.io/pypi/pyversions/balrogo.svg)](https://pypi.python.org/pypi/balrogo)
[![license](http://img.shields.io/badge/license-MIT-blue.svg)](LICENSE)

<!-- markdownlint-disable-next-line no-inline-html -->
<img alt="logo" align="right" src="https://gitlab.com/eduardo-vitral/balrogo/-/raw/master/logo.png" width="20%" />

BALRoGO: Bayesian Astrometric Likelihood Recovery of Galactic Objects.

- Specially developed to handle data from the Gaia space mission.
- Extracts galactic objects such as globular clusters and dwarf galaxies from data contaminated by interlopers.
- Uses a combination of Bayesian and non-Bayesian approaches.
- Provides:
  - Fits of proper motion space.
  - Fits of surface density.
  - Fits of object center.
  - Confidence regions for the color-magnitude diagram and parallaxes.

If something does not work, please [file an issue](https://gitlab.com/eduardo-vitral/balrogo/-/issues).

## Attribution

Please cite [us](https://academic.oup.com/mnras/article-abstract/504/1/1355/6237524?redirectedFrom=fulltext) if you find this code useful in your research. The BibTeX entry for the paper is:

```bibtex
@ARTICLE{Vitral21,
   author = {{Vitral}, Eduardo},
    title = "BALRoGO: Bayesian Astrometric Likelihood Recovery of Galactic Objects - Global properties of over one hundred globular clusters with Gaia EDR3",
  journal = {\mnras},
     year = 2021,
    month = jun,
   volume = {504},
   number = {1},
    pages = {1355-1369},
      doi = {10.1093/mnras/stab947},
   eprint = {2102.04841},
   adsurl = {https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.1355V},
}
```

## Quick overview

BALRoGO has nine modules that perform different tasks:

- ***angle.py*** : This module contains the main functions concerning angular tansformations, sky projections and spherical trigonomtry.
- ***gaia.py*** : This module contains the main functions concerning the handling of the Gaia mission data.
- ***hrd.py*** : This module contains the main functions concerning the color magnitude diagram (CMD). It provides a Kernel Density Estimation (KDE) of the CMD distribution.
- ***marginals.py*** : This module is based on the Python corner package (Copyright 2013-2016 Dan Foreman-Mackey & contributors, The Journal of Open Source Software): https://joss.theoj.org/papers/10.21105/joss.00024
I have done some modifications on it so it allows some new features and so it takes into account some choices as default. I thank Gary Mamon for his good suggestions concerning the plot visualization.
-  ***parallax.py*** : This module contains the main functions concerning parallax information. It provides a kernel density estimation of the distance distribution, as well as a fit of the mode of this distribution.
- ***pm.py*** : This module contains the main functions concerning proper motion data. It provides MCMC and maximum likelihood fits of proper motions data, as well as robust initial guesses for those fits.
- ***position.py*** : This module contains the main functions concerning positional information. It provides MCMC and maximum likelihood fits of surface density, as well as robust initial guesses for the (RA,Dec) center of the source.
- ***mock.py*** : This module handles mock data sets. It converts 3D coordinates to sky coordinates and is able to add realistic errors to proper motions. It is also able to generate Milky Way interlopers.
- ***dynamics.py*** : This module handles conversions from celestial coordinates to plane of sky coordinates (vPOSr,vPOSt), as well as allows computation of dispersion profiles in different ways. Also computes the velocity anisotropy from cartesian data.

## Installation

BALRoGO is available through [pip](https://pypi.org/project/balrogo/). The quickiest way to install it is to type the following command in your terminal:

```terminal
pip install balrogo
```

If you are using [Anaconda](https://www.anaconda.com/), you might want to install it directly in your Anaconda bin path:

```terminal
cd path/anaconda3/bin/
pip install balrogo
```

For updated versions of the code, you can do the same as above, but instead of using `pip install balrogo`, you should type:

```terminal
pip install --upgrade balrogo
```

### Using BALRoGO on [*Gaia*](https://www.cosmos.esa.int/web/gaia/data-access) data

For quick tutorial of BALRoGO applied to *Gaia* data, please click [here](https://gitlab.com/eduardo-vitral/balrogo/-/blob/master/GAIA.md).

## License

Copyright (c) 2020 Eduardo Vitral & Alexandre Macedo.

BALRoGO is free software made available under the [MIT License](LICENSE). The BALRoGO logo is licensed under a [Creative Commons Attribution 4.0 International license](https://creativecommons.org/licenses/by/4.0/).


%package -n python3-balrogo
Summary:	Bayesian Astrometric Likelihood Recovery of Galactic Objects
Provides:	python-balrogo
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-balrogo
# BALRoGO

[![pipeline status](https://gitlab.com/eduardo-vitral/balrogo/badges/master/pipeline.svg)](https://gitlab.com/eduardo-vitral/balrogo/-/commits/master)
[![coverage report](https://gitlab.com/eduardo-vitral/balrogo/badges/master/coverage.svg)](https://gitlab.com/eduardo-vitral/balrogo/-/commits/master)
[![pypi](https://img.shields.io/pypi/v/balrogo.svg)](https://pypi.python.org/pypi/balrogo/)
[![python](https://img.shields.io/pypi/pyversions/balrogo.svg)](https://pypi.python.org/pypi/balrogo)
[![license](http://img.shields.io/badge/license-MIT-blue.svg)](LICENSE)

<!-- markdownlint-disable-next-line no-inline-html -->
<img alt="logo" align="right" src="https://gitlab.com/eduardo-vitral/balrogo/-/raw/master/logo.png" width="20%" />

BALRoGO: Bayesian Astrometric Likelihood Recovery of Galactic Objects.

- Specially developed to handle data from the Gaia space mission.
- Extracts galactic objects such as globular clusters and dwarf galaxies from data contaminated by interlopers.
- Uses a combination of Bayesian and non-Bayesian approaches.
- Provides:
  - Fits of proper motion space.
  - Fits of surface density.
  - Fits of object center.
  - Confidence regions for the color-magnitude diagram and parallaxes.

If something does not work, please [file an issue](https://gitlab.com/eduardo-vitral/balrogo/-/issues).

## Attribution

Please cite [us](https://academic.oup.com/mnras/article-abstract/504/1/1355/6237524?redirectedFrom=fulltext) if you find this code useful in your research. The BibTeX entry for the paper is:

```bibtex
@ARTICLE{Vitral21,
   author = {{Vitral}, Eduardo},
    title = "BALRoGO: Bayesian Astrometric Likelihood Recovery of Galactic Objects - Global properties of over one hundred globular clusters with Gaia EDR3",
  journal = {\mnras},
     year = 2021,
    month = jun,
   volume = {504},
   number = {1},
    pages = {1355-1369},
      doi = {10.1093/mnras/stab947},
   eprint = {2102.04841},
   adsurl = {https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.1355V},
}
```

## Quick overview

BALRoGO has nine modules that perform different tasks:

- ***angle.py*** : This module contains the main functions concerning angular tansformations, sky projections and spherical trigonomtry.
- ***gaia.py*** : This module contains the main functions concerning the handling of the Gaia mission data.
- ***hrd.py*** : This module contains the main functions concerning the color magnitude diagram (CMD). It provides a Kernel Density Estimation (KDE) of the CMD distribution.
- ***marginals.py*** : This module is based on the Python corner package (Copyright 2013-2016 Dan Foreman-Mackey & contributors, The Journal of Open Source Software): https://joss.theoj.org/papers/10.21105/joss.00024
I have done some modifications on it so it allows some new features and so it takes into account some choices as default. I thank Gary Mamon for his good suggestions concerning the plot visualization.
-  ***parallax.py*** : This module contains the main functions concerning parallax information. It provides a kernel density estimation of the distance distribution, as well as a fit of the mode of this distribution.
- ***pm.py*** : This module contains the main functions concerning proper motion data. It provides MCMC and maximum likelihood fits of proper motions data, as well as robust initial guesses for those fits.
- ***position.py*** : This module contains the main functions concerning positional information. It provides MCMC and maximum likelihood fits of surface density, as well as robust initial guesses for the (RA,Dec) center of the source.
- ***mock.py*** : This module handles mock data sets. It converts 3D coordinates to sky coordinates and is able to add realistic errors to proper motions. It is also able to generate Milky Way interlopers.
- ***dynamics.py*** : This module handles conversions from celestial coordinates to plane of sky coordinates (vPOSr,vPOSt), as well as allows computation of dispersion profiles in different ways. Also computes the velocity anisotropy from cartesian data.

## Installation

BALRoGO is available through [pip](https://pypi.org/project/balrogo/). The quickiest way to install it is to type the following command in your terminal:

```terminal
pip install balrogo
```

If you are using [Anaconda](https://www.anaconda.com/), you might want to install it directly in your Anaconda bin path:

```terminal
cd path/anaconda3/bin/
pip install balrogo
```

For updated versions of the code, you can do the same as above, but instead of using `pip install balrogo`, you should type:

```terminal
pip install --upgrade balrogo
```

### Using BALRoGO on [*Gaia*](https://www.cosmos.esa.int/web/gaia/data-access) data

For quick tutorial of BALRoGO applied to *Gaia* data, please click [here](https://gitlab.com/eduardo-vitral/balrogo/-/blob/master/GAIA.md).

## License

Copyright (c) 2020 Eduardo Vitral & Alexandre Macedo.

BALRoGO is free software made available under the [MIT License](LICENSE). The BALRoGO logo is licensed under a [Creative Commons Attribution 4.0 International license](https://creativecommons.org/licenses/by/4.0/).


%package help
Summary:	Development documents and examples for balrogo
Provides:	python3-balrogo-doc
%description help
# BALRoGO

[![pipeline status](https://gitlab.com/eduardo-vitral/balrogo/badges/master/pipeline.svg)](https://gitlab.com/eduardo-vitral/balrogo/-/commits/master)
[![coverage report](https://gitlab.com/eduardo-vitral/balrogo/badges/master/coverage.svg)](https://gitlab.com/eduardo-vitral/balrogo/-/commits/master)
[![pypi](https://img.shields.io/pypi/v/balrogo.svg)](https://pypi.python.org/pypi/balrogo/)
[![python](https://img.shields.io/pypi/pyversions/balrogo.svg)](https://pypi.python.org/pypi/balrogo)
[![license](http://img.shields.io/badge/license-MIT-blue.svg)](LICENSE)

<!-- markdownlint-disable-next-line no-inline-html -->
<img alt="logo" align="right" src="https://gitlab.com/eduardo-vitral/balrogo/-/raw/master/logo.png" width="20%" />

BALRoGO: Bayesian Astrometric Likelihood Recovery of Galactic Objects.

- Specially developed to handle data from the Gaia space mission.
- Extracts galactic objects such as globular clusters and dwarf galaxies from data contaminated by interlopers.
- Uses a combination of Bayesian and non-Bayesian approaches.
- Provides:
  - Fits of proper motion space.
  - Fits of surface density.
  - Fits of object center.
  - Confidence regions for the color-magnitude diagram and parallaxes.

If something does not work, please [file an issue](https://gitlab.com/eduardo-vitral/balrogo/-/issues).

## Attribution

Please cite [us](https://academic.oup.com/mnras/article-abstract/504/1/1355/6237524?redirectedFrom=fulltext) if you find this code useful in your research. The BibTeX entry for the paper is:

```bibtex
@ARTICLE{Vitral21,
   author = {{Vitral}, Eduardo},
    title = "BALRoGO: Bayesian Astrometric Likelihood Recovery of Galactic Objects - Global properties of over one hundred globular clusters with Gaia EDR3",
  journal = {\mnras},
     year = 2021,
    month = jun,
   volume = {504},
   number = {1},
    pages = {1355-1369},
      doi = {10.1093/mnras/stab947},
   eprint = {2102.04841},
   adsurl = {https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.1355V},
}
```

## Quick overview

BALRoGO has nine modules that perform different tasks:

- ***angle.py*** : This module contains the main functions concerning angular tansformations, sky projections and spherical trigonomtry.
- ***gaia.py*** : This module contains the main functions concerning the handling of the Gaia mission data.
- ***hrd.py*** : This module contains the main functions concerning the color magnitude diagram (CMD). It provides a Kernel Density Estimation (KDE) of the CMD distribution.
- ***marginals.py*** : This module is based on the Python corner package (Copyright 2013-2016 Dan Foreman-Mackey & contributors, The Journal of Open Source Software): https://joss.theoj.org/papers/10.21105/joss.00024
I have done some modifications on it so it allows some new features and so it takes into account some choices as default. I thank Gary Mamon for his good suggestions concerning the plot visualization.
-  ***parallax.py*** : This module contains the main functions concerning parallax information. It provides a kernel density estimation of the distance distribution, as well as a fit of the mode of this distribution.
- ***pm.py*** : This module contains the main functions concerning proper motion data. It provides MCMC and maximum likelihood fits of proper motions data, as well as robust initial guesses for those fits.
- ***position.py*** : This module contains the main functions concerning positional information. It provides MCMC and maximum likelihood fits of surface density, as well as robust initial guesses for the (RA,Dec) center of the source.
- ***mock.py*** : This module handles mock data sets. It converts 3D coordinates to sky coordinates and is able to add realistic errors to proper motions. It is also able to generate Milky Way interlopers.
- ***dynamics.py*** : This module handles conversions from celestial coordinates to plane of sky coordinates (vPOSr,vPOSt), as well as allows computation of dispersion profiles in different ways. Also computes the velocity anisotropy from cartesian data.

## Installation

BALRoGO is available through [pip](https://pypi.org/project/balrogo/). The quickiest way to install it is to type the following command in your terminal:

```terminal
pip install balrogo
```

If you are using [Anaconda](https://www.anaconda.com/), you might want to install it directly in your Anaconda bin path:

```terminal
cd path/anaconda3/bin/
pip install balrogo
```

For updated versions of the code, you can do the same as above, but instead of using `pip install balrogo`, you should type:

```terminal
pip install --upgrade balrogo
```

### Using BALRoGO on [*Gaia*](https://www.cosmos.esa.int/web/gaia/data-access) data

For quick tutorial of BALRoGO applied to *Gaia* data, please click [here](https://gitlab.com/eduardo-vitral/balrogo/-/blob/master/GAIA.md).

## License

Copyright (c) 2020 Eduardo Vitral & Alexandre Macedo.

BALRoGO is free software made available under the [MIT License](LICENSE). The BALRoGO logo is licensed under a [Creative Commons Attribution 4.0 International license](https://creativecommons.org/licenses/by/4.0/).


%prep
%autosetup -n balrogo-1.6.4

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-balrogo -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.6.4-1
- Package Spec generated