1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
%global _empty_manifest_terminate_build 0
Name: python-banner-storedot
Version: 2.3.1
Release: 1
Summary: light dal package
License: MIT License
URL: https://https://github.com/storedot/banner
Source0: https://mirrors.aliyun.com/pypi/web/packages/1e/d1/a1d53b6a74d2ebc3277fa5d5e708c01cc8d8f9020c99f60f66907e8e5895/banner-storedot-2.3.1.tar.gz
BuildArch: noarch
Requires: python3-wheel
Requires: python3-mysqlclient
Requires: python3-redis
Requires: python3-pandas
Requires: python3-joblib
Requires: python3-psycopg2
%description
# banner.connection:
## Connection(Object):
- ABS class
## RelationalConnection(Connection):
- ABS class
## Storage(Connection):
- ABS class
## PrintableConnection(Connection):
- ABS class
## MySqlConnection(RelationalConnection, PrintableConnection)(host, user, passwd, db, ssl_key, ssl_cert, name):
- Create Connection object compatible with banner.queries
- **raises MySQLError for bad connection**
## PostgresSqlConnection(RelationalConnection, PrintableConnection)(host, user, port=5432, passwd=None, db=None, ssl_key=None, ssl_cert=None, charset='utf8', name=None):
- Create Connection object compatible with banner.queries
- **raises MySQLError for bad connection**
## RedisConnection(Storage, PrintableConnection)(host, port, passwd, db, ssl_key, ssl_cert, name, ttl):
- Create CacheConnection object compatible with banner.queries
# banner.queries.Queries:
## CONNECTIONS(conns: Dict[str, Connection] = {}) -> :
- Getter/Setter for known(default) Connections dict
## CACHE(con: CacheConnection = None):
- Getter/Setter for known(default) CacheConnection
## simple_query(query: str, w2p_parse: bool = True, connection: Union[Connection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame:
- run a simple string query for Connection
- connection=None try to get first known connection, **raise KeyError if None found**
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
- w2p_parse=True - should parse query according to w2p syntax
## describe_table(table: str, connection: Union[RelationalConnection, str] = None) -> pd.DataFrame:
- Describes a table in connection
- Raises OperationalError and KeyError(Failed to find a connection for given key)
## describe(connection: Union[RelationalConnection, str] = None) -> pd.DataFrame:
- Describe Table names in connection
- Raises OperationalError and KeyError(Failed to find a connection for given key)
## table_query(table: str, columns: Union[list, str] = '*', condition: str = 'TRUE', connection=None, cache_connection=None, ttl=None, raw=False) -> pd.DataFrame:
- Queries a given connection for 'SELECT {columns} FROM {table} WHERE {condition}'
- Accepts both column values and labels
- raw=True - column names as in db
- Queries a given Connection(ip)/str of a known connection (or first known) return result as DataFrame
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
- Raises OperationalError and KeyError(Failed to find a connection for given key)
## neware_cache_query(keys: Iterable, condition: str = 'TRUE', connection: Union[MySqlConnection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame:
- simplified query to retrieve aggregate cache data by condition
- condition is a valid where clause for given connection type
- requires keys in the form Iterable(Tuple(ip, device, unit, channel, test)), ex: [(241, 240222, 6, 11, 2818575226)]
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
## neware_query(device: int, unit: int, channel: int, test: int, connection: Union[Connection, str] = None, cache_connection=None, ttl=None, raw=False, dqdv=False, condition: str = '1', temperature: bool = True, cache_data: pd.DataFrame = pd.DataFrame()) -> pd.DataFrame:
- query Connection for device, unit, channel, test
- connection=None try to get first known connection, **raise KeyError if None found**
- temperature=True - fetch temperature data
- raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id
- dqdv=True -> banner.neware.calc_dq_dv
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
- **raises Type err if no data exists**
## neware_tests_query(table: str, experiments: Union[list, Number, str] = [], templates: Union[list, Number, str] = [], tests: Union[list, Number, str] = [], cells: Union[list,Number, str] = [], condition: str = 'cycle < 2', raw=False, dqdv=False, temperature: bool = True, connection: Union[Connection, str] = None, cache_connection=None, ttl=None):
- Multi Process Queries.neware_query (number of processes = number of distinct connections found for input)
- Queries all available tests for given table AND experiments AND templates AND tests AND cells
- Union[list, Number, str] - single/list of numbers or a valid query
- temperature=True - fetch temperature data
- raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id
- dqdv=True -> banner.neware.calc_dq_dv
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
- **raises Type err if no data exists**
# banner.neware:
## NEWARE_STEPS:
- Step number : Step Name Dictionary
## calculate_neware_columns(data: pd.DataFrame):
- calculate neware columns for a valid neware DataFrame
## calculate_dq_dv(data: pd.DataFrame, raw=False):
- Calculate DQ/DV for a valid neware df
- raw=False: remove outliers
## merge_cache(data: pd.DataFrame, cache_data: pd.DataFrame):
- Given data(neware df), cache_data(neware_cache df), tries to merge cache_data into data
- ** Raises TypeError and Index Error**
# banner.utils.web2py:
## JOINS:
- Default Joins dictionary
- Used when calling DataFrame.join_table without specifing how to join
## COLUMN_TO_LABEL:
- Column : Label Dictionary
## LABEL_TO_COLUMN:
- Label : Column Dictionary
# banner.pandas_decorator:
## Added functionality onto Pandas.DataFrame object
## DataFrame.table_query
- banner.queries.Queries.table_query
## DataFrame.calculate_neware_columns
- banner.neware.calculate_neware_columns
## DataFrame.calculate_dq_dv
- banner.neware.calculate_dq_dv
## join_table(table: str, columns: Union[list, str] = '*', condition: str = 'TRUE', left: Union[str, list, None] = None, right: Union[str, list, None] = None, how: Union[str, None] = None, connection: Union[RelationalConnection, str] = None, raw: bool = False, cache: Storage=None, ttl: Union[bool, None] = None) -> pd.DataFrame:
- Given a table, Join its relevant Data with the current table_query DataFrame!
- table: any table under the available Connection
- columns: select specific columns from the table, default=All
- condition: additional filtering condition on merged data
- left: columns used to merge left DataFrame, default is picked from banner.utils.web2py.JOINS
- right: columns used to merge right DataFrame, default is picked from banner.utils.web2py.JOINS
- how: how to merge left and right, default is picked from banner.utils.web2py.JOINS
- connection=None try to get first known connection, **raise KeyError if None found**
- **raise TypeError If failed to join**
%package -n python3-banner-storedot
Summary: light dal package
Provides: python-banner-storedot
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-banner-storedot
# banner.connection:
## Connection(Object):
- ABS class
## RelationalConnection(Connection):
- ABS class
## Storage(Connection):
- ABS class
## PrintableConnection(Connection):
- ABS class
## MySqlConnection(RelationalConnection, PrintableConnection)(host, user, passwd, db, ssl_key, ssl_cert, name):
- Create Connection object compatible with banner.queries
- **raises MySQLError for bad connection**
## PostgresSqlConnection(RelationalConnection, PrintableConnection)(host, user, port=5432, passwd=None, db=None, ssl_key=None, ssl_cert=None, charset='utf8', name=None):
- Create Connection object compatible with banner.queries
- **raises MySQLError for bad connection**
## RedisConnection(Storage, PrintableConnection)(host, port, passwd, db, ssl_key, ssl_cert, name, ttl):
- Create CacheConnection object compatible with banner.queries
# banner.queries.Queries:
## CONNECTIONS(conns: Dict[str, Connection] = {}) -> :
- Getter/Setter for known(default) Connections dict
## CACHE(con: CacheConnection = None):
- Getter/Setter for known(default) CacheConnection
## simple_query(query: str, w2p_parse: bool = True, connection: Union[Connection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame:
- run a simple string query for Connection
- connection=None try to get first known connection, **raise KeyError if None found**
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
- w2p_parse=True - should parse query according to w2p syntax
## describe_table(table: str, connection: Union[RelationalConnection, str] = None) -> pd.DataFrame:
- Describes a table in connection
- Raises OperationalError and KeyError(Failed to find a connection for given key)
## describe(connection: Union[RelationalConnection, str] = None) -> pd.DataFrame:
- Describe Table names in connection
- Raises OperationalError and KeyError(Failed to find a connection for given key)
## table_query(table: str, columns: Union[list, str] = '*', condition: str = 'TRUE', connection=None, cache_connection=None, ttl=None, raw=False) -> pd.DataFrame:
- Queries a given connection for 'SELECT {columns} FROM {table} WHERE {condition}'
- Accepts both column values and labels
- raw=True - column names as in db
- Queries a given Connection(ip)/str of a known connection (or first known) return result as DataFrame
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
- Raises OperationalError and KeyError(Failed to find a connection for given key)
## neware_cache_query(keys: Iterable, condition: str = 'TRUE', connection: Union[MySqlConnection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame:
- simplified query to retrieve aggregate cache data by condition
- condition is a valid where clause for given connection type
- requires keys in the form Iterable(Tuple(ip, device, unit, channel, test)), ex: [(241, 240222, 6, 11, 2818575226)]
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
## neware_query(device: int, unit: int, channel: int, test: int, connection: Union[Connection, str] = None, cache_connection=None, ttl=None, raw=False, dqdv=False, condition: str = '1', temperature: bool = True, cache_data: pd.DataFrame = pd.DataFrame()) -> pd.DataFrame:
- query Connection for device, unit, channel, test
- connection=None try to get first known connection, **raise KeyError if None found**
- temperature=True - fetch temperature data
- raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id
- dqdv=True -> banner.neware.calc_dq_dv
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
- **raises Type err if no data exists**
## neware_tests_query(table: str, experiments: Union[list, Number, str] = [], templates: Union[list, Number, str] = [], tests: Union[list, Number, str] = [], cells: Union[list,Number, str] = [], condition: str = 'cycle < 2', raw=False, dqdv=False, temperature: bool = True, connection: Union[Connection, str] = None, cache_connection=None, ttl=None):
- Multi Process Queries.neware_query (number of processes = number of distinct connections found for input)
- Queries all available tests for given table AND experiments AND templates AND tests AND cells
- Union[list, Number, str] - single/list of numbers or a valid query
- temperature=True - fetch temperature data
- raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id
- dqdv=True -> banner.neware.calc_dq_dv
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
- **raises Type err if no data exists**
# banner.neware:
## NEWARE_STEPS:
- Step number : Step Name Dictionary
## calculate_neware_columns(data: pd.DataFrame):
- calculate neware columns for a valid neware DataFrame
## calculate_dq_dv(data: pd.DataFrame, raw=False):
- Calculate DQ/DV for a valid neware df
- raw=False: remove outliers
## merge_cache(data: pd.DataFrame, cache_data: pd.DataFrame):
- Given data(neware df), cache_data(neware_cache df), tries to merge cache_data into data
- ** Raises TypeError and Index Error**
# banner.utils.web2py:
## JOINS:
- Default Joins dictionary
- Used when calling DataFrame.join_table without specifing how to join
## COLUMN_TO_LABEL:
- Column : Label Dictionary
## LABEL_TO_COLUMN:
- Label : Column Dictionary
# banner.pandas_decorator:
## Added functionality onto Pandas.DataFrame object
## DataFrame.table_query
- banner.queries.Queries.table_query
## DataFrame.calculate_neware_columns
- banner.neware.calculate_neware_columns
## DataFrame.calculate_dq_dv
- banner.neware.calculate_dq_dv
## join_table(table: str, columns: Union[list, str] = '*', condition: str = 'TRUE', left: Union[str, list, None] = None, right: Union[str, list, None] = None, how: Union[str, None] = None, connection: Union[RelationalConnection, str] = None, raw: bool = False, cache: Storage=None, ttl: Union[bool, None] = None) -> pd.DataFrame:
- Given a table, Join its relevant Data with the current table_query DataFrame!
- table: any table under the available Connection
- columns: select specific columns from the table, default=All
- condition: additional filtering condition on merged data
- left: columns used to merge left DataFrame, default is picked from banner.utils.web2py.JOINS
- right: columns used to merge right DataFrame, default is picked from banner.utils.web2py.JOINS
- how: how to merge left and right, default is picked from banner.utils.web2py.JOINS
- connection=None try to get first known connection, **raise KeyError if None found**
- **raise TypeError If failed to join**
%package help
Summary: Development documents and examples for banner-storedot
Provides: python3-banner-storedot-doc
%description help
# banner.connection:
## Connection(Object):
- ABS class
## RelationalConnection(Connection):
- ABS class
## Storage(Connection):
- ABS class
## PrintableConnection(Connection):
- ABS class
## MySqlConnection(RelationalConnection, PrintableConnection)(host, user, passwd, db, ssl_key, ssl_cert, name):
- Create Connection object compatible with banner.queries
- **raises MySQLError for bad connection**
## PostgresSqlConnection(RelationalConnection, PrintableConnection)(host, user, port=5432, passwd=None, db=None, ssl_key=None, ssl_cert=None, charset='utf8', name=None):
- Create Connection object compatible with banner.queries
- **raises MySQLError for bad connection**
## RedisConnection(Storage, PrintableConnection)(host, port, passwd, db, ssl_key, ssl_cert, name, ttl):
- Create CacheConnection object compatible with banner.queries
# banner.queries.Queries:
## CONNECTIONS(conns: Dict[str, Connection] = {}) -> :
- Getter/Setter for known(default) Connections dict
## CACHE(con: CacheConnection = None):
- Getter/Setter for known(default) CacheConnection
## simple_query(query: str, w2p_parse: bool = True, connection: Union[Connection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame:
- run a simple string query for Connection
- connection=None try to get first known connection, **raise KeyError if None found**
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
- w2p_parse=True - should parse query according to w2p syntax
## describe_table(table: str, connection: Union[RelationalConnection, str] = None) -> pd.DataFrame:
- Describes a table in connection
- Raises OperationalError and KeyError(Failed to find a connection for given key)
## describe(connection: Union[RelationalConnection, str] = None) -> pd.DataFrame:
- Describe Table names in connection
- Raises OperationalError and KeyError(Failed to find a connection for given key)
## table_query(table: str, columns: Union[list, str] = '*', condition: str = 'TRUE', connection=None, cache_connection=None, ttl=None, raw=False) -> pd.DataFrame:
- Queries a given connection for 'SELECT {columns} FROM {table} WHERE {condition}'
- Accepts both column values and labels
- raw=True - column names as in db
- Queries a given Connection(ip)/str of a known connection (or first known) return result as DataFrame
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
- Raises OperationalError and KeyError(Failed to find a connection for given key)
## neware_cache_query(keys: Iterable, condition: str = 'TRUE', connection: Union[MySqlConnection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame:
- simplified query to retrieve aggregate cache data by condition
- condition is a valid where clause for given connection type
- requires keys in the form Iterable(Tuple(ip, device, unit, channel, test)), ex: [(241, 240222, 6, 11, 2818575226)]
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
## neware_query(device: int, unit: int, channel: int, test: int, connection: Union[Connection, str] = None, cache_connection=None, ttl=None, raw=False, dqdv=False, condition: str = '1', temperature: bool = True, cache_data: pd.DataFrame = pd.DataFrame()) -> pd.DataFrame:
- query Connection for device, unit, channel, test
- connection=None try to get first known connection, **raise KeyError if None found**
- temperature=True - fetch temperature data
- raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id
- dqdv=True -> banner.neware.calc_dq_dv
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
- **raises Type err if no data exists**
## neware_tests_query(table: str, experiments: Union[list, Number, str] = [], templates: Union[list, Number, str] = [], tests: Union[list, Number, str] = [], cells: Union[list,Number, str] = [], condition: str = 'cycle < 2', raw=False, dqdv=False, temperature: bool = True, connection: Union[Connection, str] = None, cache_connection=None, ttl=None):
- Multi Process Queries.neware_query (number of processes = number of distinct connections found for input)
- Queries all available tests for given table AND experiments AND templates AND tests AND cells
- Union[list, Number, str] - single/list of numbers or a valid query
- temperature=True - fetch temperature data
- raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id
- dqdv=True -> banner.neware.calc_dq_dv
- Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
- Cache=False will not cache the result even if Queries.CACHE is set
- **raises Type err if no data exists**
# banner.neware:
## NEWARE_STEPS:
- Step number : Step Name Dictionary
## calculate_neware_columns(data: pd.DataFrame):
- calculate neware columns for a valid neware DataFrame
## calculate_dq_dv(data: pd.DataFrame, raw=False):
- Calculate DQ/DV for a valid neware df
- raw=False: remove outliers
## merge_cache(data: pd.DataFrame, cache_data: pd.DataFrame):
- Given data(neware df), cache_data(neware_cache df), tries to merge cache_data into data
- ** Raises TypeError and Index Error**
# banner.utils.web2py:
## JOINS:
- Default Joins dictionary
- Used when calling DataFrame.join_table without specifing how to join
## COLUMN_TO_LABEL:
- Column : Label Dictionary
## LABEL_TO_COLUMN:
- Label : Column Dictionary
# banner.pandas_decorator:
## Added functionality onto Pandas.DataFrame object
## DataFrame.table_query
- banner.queries.Queries.table_query
## DataFrame.calculate_neware_columns
- banner.neware.calculate_neware_columns
## DataFrame.calculate_dq_dv
- banner.neware.calculate_dq_dv
## join_table(table: str, columns: Union[list, str] = '*', condition: str = 'TRUE', left: Union[str, list, None] = None, right: Union[str, list, None] = None, how: Union[str, None] = None, connection: Union[RelationalConnection, str] = None, raw: bool = False, cache: Storage=None, ttl: Union[bool, None] = None) -> pd.DataFrame:
- Given a table, Join its relevant Data with the current table_query DataFrame!
- table: any table under the available Connection
- columns: select specific columns from the table, default=All
- condition: additional filtering condition on merged data
- left: columns used to merge left DataFrame, default is picked from banner.utils.web2py.JOINS
- right: columns used to merge right DataFrame, default is picked from banner.utils.web2py.JOINS
- how: how to merge left and right, default is picked from banner.utils.web2py.JOINS
- connection=None try to get first known connection, **raise KeyError if None found**
- **raise TypeError If failed to join**
%prep
%autosetup -n banner-storedot-2.3.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-banner-storedot -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 2.3.1-1
- Package Spec generated
|