1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
%global _empty_manifest_terminate_build 0
Name: python-benfordslaw
Version: 1.2.2
Release: 1
Summary: benfordslaw is a python library to test the frequency distribution of leading digits.
License: MIT License
URL: https://erdogant.github.io/benfordslaw
Source0: https://mirrors.aliyun.com/pypi/web/packages/2a/6c/6bb0043dd1a6f9eca0b723781685720ef97b08589b74498a71bcb9da37bd/benfordslaw-1.2.2.tar.gz
BuildArch: noarch
Requires: python3-matplotlib
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-wget
%description
# benfordslaw
[](https://img.shields.io/pypi/pyversions/benfordslaw)
[](https://pypi.org/project/benfordslaw/)
[](https://github.com/erdogant/benfordslaw/blob/master/LICENSE)
[](https://www.buymeacoffee.com/erdogant)
[](https://github.com/erdogant/benfordslaw/network)
[](https://github.com/erdogant/benfordslaw/issues)
[](http://www.repostatus.org/#active)
[](https://pepy.tech/project/benfordslaw/month)
[](https://pepy.tech/project/benfordslaw)
[](https://erdogant.github.io/benfordslaw/pages/html/Documentation.html#colab-notebook)
[](https://erdogant.github.io/benfordslaw/)
[](https://zenodo.org/badge/latestdoi/239205250)
<!---[](https://erdogant.github.io/donate/?currency=USD&amount=5)-->
* ``benfordslaw`` is Python package to test if an empirical (observed) distribution differs significantly from a theoretical (expected, Benfords) distribution. The law states that in many naturally occurring collections of numbers, the leading significant digit is likely to be small. This method can be used if you want to test whether your set of numbers may be artificial (or manipulated). If a certain set of values follows Benford's Law then model's for the corresponding predicted values should also follow Benford's Law. Normal data (Unmanipulated) does trend with Benford's Law, whereas Manipulated or fraudulent data does not.
* Assumptions of the data:
1. The numbers need to be random and not assigned, with no imposed minimums or maximums.
2. The numbers should cover several orders of magnitude
3. Dataset should preferably cover at least 1000 samples. Though Benford's law has been shown to hold true for datasets containing as few as 50 numbers.
#
**⭐️ Star this repo if you like it ⭐️**
#
#### Install benfordslaw from PyPI
```bash
pip install benfordslaw
```
#### Import benfordslaw package
```python
from benfordslaw import benfordslaw
```
#
### [Documentation pages](https://erdogant.github.io/benfordslaw/)
On the [documentation pages](https://erdogant.github.io/benfordslaw/) you can find detailed information about the working of the ``benfordslaw`` with many examples.
<hr>
### Examples
#
* [Example: Analyze first digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-digit-test)
<p align="left">
<a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-digit-test">
<img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig1.png" width="600" />
</a>
</p>
#
* [Example: Analyze second digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html)
<p align="left">
<a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html">
<img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig2nd_digit_votes.png" width="600" />
</a>
</p>
#
* [Example: Analyze last digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html#last-digit-test)
<p align="left">
<a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html#last-digit-test">
<img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig_last_digit_votes.png" width="600" />
</a>
</p>
#
* [Example: Analyze second last digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-last-digit-test)
<p align="left">
<a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-last-digit-test">
<img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig_2nd_last_digit_votes.png" width="600" />
</a>
</p>
#### References
* https://en.wikipedia.org/wiki/Benford%27s_law
* https://towardsdatascience.com/frawd-detection-using-benfords-law-python-code-9db8db474cf8
#### Citation
Please cite in your publications if this is useful for your research (see citation).
### Maintainers
* Erdogan Taskesen, github: [erdogant](https://github.com/erdogant)
### Contribute
* All kinds of contributions are welcome!
* If you wish to buy me a <a href="https://www.buymeacoffee.com/erdogant">Coffee</a> for this work, it is very appreciated :)
### Licence
See [LICENSE](LICENSE) for details.
%package -n python3-benfordslaw
Summary: benfordslaw is a python library to test the frequency distribution of leading digits.
Provides: python-benfordslaw
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-benfordslaw
# benfordslaw
[](https://img.shields.io/pypi/pyversions/benfordslaw)
[](https://pypi.org/project/benfordslaw/)
[](https://github.com/erdogant/benfordslaw/blob/master/LICENSE)
[](https://www.buymeacoffee.com/erdogant)
[](https://github.com/erdogant/benfordslaw/network)
[](https://github.com/erdogant/benfordslaw/issues)
[](http://www.repostatus.org/#active)
[](https://pepy.tech/project/benfordslaw/month)
[](https://pepy.tech/project/benfordslaw)
[](https://erdogant.github.io/benfordslaw/pages/html/Documentation.html#colab-notebook)
[](https://erdogant.github.io/benfordslaw/)
[](https://zenodo.org/badge/latestdoi/239205250)
<!---[](https://erdogant.github.io/donate/?currency=USD&amount=5)-->
* ``benfordslaw`` is Python package to test if an empirical (observed) distribution differs significantly from a theoretical (expected, Benfords) distribution. The law states that in many naturally occurring collections of numbers, the leading significant digit is likely to be small. This method can be used if you want to test whether your set of numbers may be artificial (or manipulated). If a certain set of values follows Benford's Law then model's for the corresponding predicted values should also follow Benford's Law. Normal data (Unmanipulated) does trend with Benford's Law, whereas Manipulated or fraudulent data does not.
* Assumptions of the data:
1. The numbers need to be random and not assigned, with no imposed minimums or maximums.
2. The numbers should cover several orders of magnitude
3. Dataset should preferably cover at least 1000 samples. Though Benford's law has been shown to hold true for datasets containing as few as 50 numbers.
#
**⭐️ Star this repo if you like it ⭐️**
#
#### Install benfordslaw from PyPI
```bash
pip install benfordslaw
```
#### Import benfordslaw package
```python
from benfordslaw import benfordslaw
```
#
### [Documentation pages](https://erdogant.github.io/benfordslaw/)
On the [documentation pages](https://erdogant.github.io/benfordslaw/) you can find detailed information about the working of the ``benfordslaw`` with many examples.
<hr>
### Examples
#
* [Example: Analyze first digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-digit-test)
<p align="left">
<a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-digit-test">
<img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig1.png" width="600" />
</a>
</p>
#
* [Example: Analyze second digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html)
<p align="left">
<a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html">
<img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig2nd_digit_votes.png" width="600" />
</a>
</p>
#
* [Example: Analyze last digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html#last-digit-test)
<p align="left">
<a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html#last-digit-test">
<img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig_last_digit_votes.png" width="600" />
</a>
</p>
#
* [Example: Analyze second last digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-last-digit-test)
<p align="left">
<a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-last-digit-test">
<img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig_2nd_last_digit_votes.png" width="600" />
</a>
</p>
#### References
* https://en.wikipedia.org/wiki/Benford%27s_law
* https://towardsdatascience.com/frawd-detection-using-benfords-law-python-code-9db8db474cf8
#### Citation
Please cite in your publications if this is useful for your research (see citation).
### Maintainers
* Erdogan Taskesen, github: [erdogant](https://github.com/erdogant)
### Contribute
* All kinds of contributions are welcome!
* If you wish to buy me a <a href="https://www.buymeacoffee.com/erdogant">Coffee</a> for this work, it is very appreciated :)
### Licence
See [LICENSE](LICENSE) for details.
%package help
Summary: Development documents and examples for benfordslaw
Provides: python3-benfordslaw-doc
%description help
# benfordslaw
[](https://img.shields.io/pypi/pyversions/benfordslaw)
[](https://pypi.org/project/benfordslaw/)
[](https://github.com/erdogant/benfordslaw/blob/master/LICENSE)
[](https://www.buymeacoffee.com/erdogant)
[](https://github.com/erdogant/benfordslaw/network)
[](https://github.com/erdogant/benfordslaw/issues)
[](http://www.repostatus.org/#active)
[](https://pepy.tech/project/benfordslaw/month)
[](https://pepy.tech/project/benfordslaw)
[](https://erdogant.github.io/benfordslaw/pages/html/Documentation.html#colab-notebook)
[](https://erdogant.github.io/benfordslaw/)
[](https://zenodo.org/badge/latestdoi/239205250)
<!---[](https://erdogant.github.io/donate/?currency=USD&amount=5)-->
* ``benfordslaw`` is Python package to test if an empirical (observed) distribution differs significantly from a theoretical (expected, Benfords) distribution. The law states that in many naturally occurring collections of numbers, the leading significant digit is likely to be small. This method can be used if you want to test whether your set of numbers may be artificial (or manipulated). If a certain set of values follows Benford's Law then model's for the corresponding predicted values should also follow Benford's Law. Normal data (Unmanipulated) does trend with Benford's Law, whereas Manipulated or fraudulent data does not.
* Assumptions of the data:
1. The numbers need to be random and not assigned, with no imposed minimums or maximums.
2. The numbers should cover several orders of magnitude
3. Dataset should preferably cover at least 1000 samples. Though Benford's law has been shown to hold true for datasets containing as few as 50 numbers.
#
**⭐️ Star this repo if you like it ⭐️**
#
#### Install benfordslaw from PyPI
```bash
pip install benfordslaw
```
#### Import benfordslaw package
```python
from benfordslaw import benfordslaw
```
#
### [Documentation pages](https://erdogant.github.io/benfordslaw/)
On the [documentation pages](https://erdogant.github.io/benfordslaw/) you can find detailed information about the working of the ``benfordslaw`` with many examples.
<hr>
### Examples
#
* [Example: Analyze first digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-digit-test)
<p align="left">
<a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-digit-test">
<img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig1.png" width="600" />
</a>
</p>
#
* [Example: Analyze second digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html)
<p align="left">
<a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html">
<img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig2nd_digit_votes.png" width="600" />
</a>
</p>
#
* [Example: Analyze last digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html#last-digit-test)
<p align="left">
<a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html#last-digit-test">
<img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig_last_digit_votes.png" width="600" />
</a>
</p>
#
* [Example: Analyze second last digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-last-digit-test)
<p align="left">
<a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-last-digit-test">
<img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig_2nd_last_digit_votes.png" width="600" />
</a>
</p>
#### References
* https://en.wikipedia.org/wiki/Benford%27s_law
* https://towardsdatascience.com/frawd-detection-using-benfords-law-python-code-9db8db474cf8
#### Citation
Please cite in your publications if this is useful for your research (see citation).
### Maintainers
* Erdogan Taskesen, github: [erdogant](https://github.com/erdogant)
### Contribute
* All kinds of contributions are welcome!
* If you wish to buy me a <a href="https://www.buymeacoffee.com/erdogant">Coffee</a> for this work, it is very appreciated :)
### Licence
See [LICENSE](LICENSE) for details.
%prep
%autosetup -n benfordslaw-1.2.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-benfordslaw -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.2-1
- Package Spec generated
|