1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
|
%global _empty_manifest_terminate_build 0
Name: python-blechpy
Version: 2.1.39
Release: 1
Summary: Package for exrtacting, processing and analyzing Intan and OpenEphys data
License: MIT License
URL: https://github.com/nubs01/blechpy
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/bc/ab/be67984b9fbdeff6f4a17873251fe7df380c189b97aa9b4b386bc14819c9/blechpy-2.1.39.tar.gz
BuildArch: noarch
Requires: python3-easygui
Requires: python3-tables
Requires: python3-numpy
Requires: python3-datashader
Requires: python3-scipy
Requires: python3-scikit-learn
Requires: python3-tqdm
Requires: python3-numba
Requires: python3-matplotlib
Requires: python3-pygments
Requires: python3-mistune
Requires: python3-ipython
Requires: python3-jupyter-core
Requires: python3-entrypoints
Requires: python3-umap-learn
Requires: python3-holoviews
Requires: python3-h5py
Requires: python3-statsmodels
Requires: python3-seaborn
Requires: python3-appdirs
Requires: python3-joblib
Requires: python3-prompt-toolkit
Requires: python3-pywavelets
Requires: python3-imageio
Requires: python3-PyYAML
%description
See the <a href='https://nubs01.github.io/blechpy'>full documentation</a> here.
- [blechpy](#blechpy)
- [Installation](#installation)
- [Usage](#usage)
- [Datasets](#datasets)
* [Starting wit a raw dataset](#starting-wit-a-raw-dataset)
+ [Create dataset](#create-dataset)
+ [Initialize Parameters](#initialize-parameters)
+ [Basic Processing](#basic-processing)
+ [Viewing a Dataset](#viewing-a-dataset)
* [Loading an existing dataset](#loading-an-existing-dataset)
* [Import processed dataset into dataset framework](#import-processed-dataset-into-dataset-framework)
- [Experiments](#experiments)
* [Creating an experiment](#creating-an-experiment)
* [Editing recordings](#editing-recordings)
* [Held unit detection](#held-unit-detection)
<small><i><a href='http://ecotrust-canada.github.io/markdown-toc/'>Table of contents generated with markdown-toc</a></i></small>
# blechpy
This is a package to extract, process and analyze electrophysiology data recorded with Intan or OpenEphys recording systems. This package is customized to store experiment and analysis metadata for the BLECh Lab (Katz lab) @ Brandeis University, but can readily be used and customized for other labs.
# Installation
I recommend installing miniconda to handle your virtual environments
Create a miniconda environment with:
```bash
conda create -n blechpy python==3.7.13
conda activate blechpy
```
Now you can install this package simply with pip:
```bash
pip install blechpy
```
If you want to update blechpy to the latest version:
```bash
pip install blechpy -U
```
Now you can deal with all of your data from within an ipython terminal:
`ipython`
```python
import blechpy
```
### Ubuntu 20.04 LTS+
With Ubuntu 20 or higher, you will get a segmentation fault when importing blechpy because numba version 0.48 installed through pip is corrupted. You will need to reinstall it via conda
```bash
conda install numba=0.48.0
```
# Usage
blechpy handles experimental metadata using data_objects which are tied to a directory encompassing some level of data. Existing types of data_objects include:
* dataset
* object for a single recording session
* experiment
* object encompasing an ordered set of recordings from a single animal
* individual recordings must first be processed as datasets
* project
* object that can encompass multiple experiments & data groups and allow analysis or group differences
# Datasets
Right now this pipeline is only compatible with recordings done with Intan's 'one file per channel' or 'one file per signal type' recordings settings.
## Starting with a raw dataset
### Create dataset
With a brand new *shiny* recording you can initilize a dataset with:
```python
dat = blechpy.dataset('path/to/recording/directory')
# or
dat = blechpy.dataset() # for user interface to select directory
```
This will create a new dataset object and setup basic file paths.
If you're working via SSH or just want a command-line interface instead of a GUI you can use the keyword argument `shell=True`
You should only do this when starting data processing for the first time. If you use it on a processed dataset, it will get overwritten.
Use blechpy.load_dataset() instead to load an existing dataset (see below)
### Initialize Parameters
```python
dat.initParams()
```
Initalizes all analysis parameters with a series of prompts.
See prompts for optional keyword params.
Primarily setups parameters for:
* Flattening Port & Channel in Electrode designations
* Common average referencing
* Labelling areas of electrodes
* Labelling digital inputs & outputs
* Labelling dead electrodes
* Clustering parameters
* Spike array creation
* PSTH creation
* Palatability/Identity Responsiveness calculations
Initial parameters are pulled from default json files in the dio subpackage.
Parameters for a dataset are written to json files in a *parameters* folder in the recording directory
Useful dat.initParams() arguments:
* data_quality='hp' -increases strictness of clustering, total # of clusters, and spike-sorting window to -0.75 to 1s.
* car_keyword = 'bilateral64' -auto assigns channel mapping to match the Omnetics-connector open ephys 64 channel EIB with 2-site implantation
* car_keyword = '2site_OE64' -auto assigns channel mapping to match Hirose-connector Open Ephys 64 channel EIB with 2-site implantation
* shell = True -bypasses GUI interface in favor of shell interface, useful if working over SSH or GUI is broken
### Basic Processing
The most basic data extraction workflow would be:
```python
dat = blechpy.dataset('/path/to/data/dir/')
dat.initParams() # See fucntion docstring, lots of optional parameters to eliminate need for user interaction
dat.extract_data() # Extracts raw data into HDF5 store
dat.create_trial_list() # Creates table of digital input triggers
dat.mark_dead_channels() # View traces and label electrodes as dead, or just pass list of dead channels
dat.mark_dead_channels([dead channel indices]) #alternatively, if you already know which chanels are dead, you can pass them as an argument
dat.common_average_reference() # Use common average referencing on data. Repalces raw with referenced data in HDF5 store
dat.detect_spikes()
dat.blech_clust_run() # Cluster data using GMM
dat.blech_clust_run(data_quality='noisy') # alternative: re-run clustering with less strict parameters
dat.sort_spikes(electrode_number) # Split, merge and label clusters as units
```
check blechpy/datastructures/dataset.py to see what functions are available
### Preferred Workflow:
This workflow uses some parameters with defualts which makes the workflow more convenient.
```python
dat = blechpy.dataset('/path/to/data/dir/')
dat.initParams(data_quality = 'hp', car_keyword = '2site_OE64') # 'hp' parameter for stricter clustering criteria, '2site_OE64' automatically maps channels to hirose-connector 64ch OEPS EIB in 2-site implantation
dat.extract_data()
dat.create_trial_list()
dat.mark_dead_channels([channel numbers]) # pass a list of dead channels (i.e. [1,2,3]) to bypass GUI marking of dead channels. Requires that you note them during drive building &/ recording
dat.common_average_reference()
dat.detect_spikes()
dat.blech_clust_run(umap=True) # Cluster with UMAP instead of GMM, supposedly better clustering
dat.sort_spikes(electrode_number) # Split, merge and label clusters as units
```
### Checking processing progress:
```python
dat.processing_status
```
Can provide an overview of basic data extraction and processing steps that need to be taken.
### Viewing a Dataset
Experiments can be easily viewed wih: `print(dat)`
A summary can also be exported to a text with: `dat.export_to_text()`
## Loading an existing dataset
```python
dat = blechpy.load_dataset() # load an existing dataset from .p file
# or
dat = blechpy.load_dataset('path/to/recording/directory')
# or
dat = blechpy.load_dataset('path/to/dataset/save/file.p')
```
## Import processed dataset into dataset framework
```python
dat = blechpy.port_in_dataset()
# or
dat = blechpy.port_in_dataset('/path/to/recording/directory')
```
# Experiments
## Creating an experiment
```python
exp = blechpy.experiment('/path/to/dir/encasing/recordings')
# or
exp = blechpy.experiment()
```
This will initalize an experiment with all recording folders within the chosen directory.
## Editing recordings
```python
exp.add_recording('/path/to/new/recording/dir/') # Add recording
exp.remove_recording('rec_label') # remove a recording dir
```
Recordings are assigned labels when added to the experiment that can be used to easily reference exerpiments.
## Held unit detection
```python
exp.detect_held_units()
```
Uses raw waveforms from sorted units to determine if units can be confidently classified as "held". Results are stored in exp.held_units as a pandas DataFrame.
This also creates plots and exports data to a created directory:
/path/to/experiment/experiment-name_analysis
# Analysis
The `blechpy.analysis` module has a lot of useful tools for analyzing your data.
Most notable is the `blechpy.analysis.poissonHMM` module which will allow fitting of the HMM models to your data. See tutorials.
%package -n python3-blechpy
Summary: Package for exrtacting, processing and analyzing Intan and OpenEphys data
Provides: python-blechpy
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-blechpy
See the <a href='https://nubs01.github.io/blechpy'>full documentation</a> here.
- [blechpy](#blechpy)
- [Installation](#installation)
- [Usage](#usage)
- [Datasets](#datasets)
* [Starting wit a raw dataset](#starting-wit-a-raw-dataset)
+ [Create dataset](#create-dataset)
+ [Initialize Parameters](#initialize-parameters)
+ [Basic Processing](#basic-processing)
+ [Viewing a Dataset](#viewing-a-dataset)
* [Loading an existing dataset](#loading-an-existing-dataset)
* [Import processed dataset into dataset framework](#import-processed-dataset-into-dataset-framework)
- [Experiments](#experiments)
* [Creating an experiment](#creating-an-experiment)
* [Editing recordings](#editing-recordings)
* [Held unit detection](#held-unit-detection)
<small><i><a href='http://ecotrust-canada.github.io/markdown-toc/'>Table of contents generated with markdown-toc</a></i></small>
# blechpy
This is a package to extract, process and analyze electrophysiology data recorded with Intan or OpenEphys recording systems. This package is customized to store experiment and analysis metadata for the BLECh Lab (Katz lab) @ Brandeis University, but can readily be used and customized for other labs.
# Installation
I recommend installing miniconda to handle your virtual environments
Create a miniconda environment with:
```bash
conda create -n blechpy python==3.7.13
conda activate blechpy
```
Now you can install this package simply with pip:
```bash
pip install blechpy
```
If you want to update blechpy to the latest version:
```bash
pip install blechpy -U
```
Now you can deal with all of your data from within an ipython terminal:
`ipython`
```python
import blechpy
```
### Ubuntu 20.04 LTS+
With Ubuntu 20 or higher, you will get a segmentation fault when importing blechpy because numba version 0.48 installed through pip is corrupted. You will need to reinstall it via conda
```bash
conda install numba=0.48.0
```
# Usage
blechpy handles experimental metadata using data_objects which are tied to a directory encompassing some level of data. Existing types of data_objects include:
* dataset
* object for a single recording session
* experiment
* object encompasing an ordered set of recordings from a single animal
* individual recordings must first be processed as datasets
* project
* object that can encompass multiple experiments & data groups and allow analysis or group differences
# Datasets
Right now this pipeline is only compatible with recordings done with Intan's 'one file per channel' or 'one file per signal type' recordings settings.
## Starting with a raw dataset
### Create dataset
With a brand new *shiny* recording you can initilize a dataset with:
```python
dat = blechpy.dataset('path/to/recording/directory')
# or
dat = blechpy.dataset() # for user interface to select directory
```
This will create a new dataset object and setup basic file paths.
If you're working via SSH or just want a command-line interface instead of a GUI you can use the keyword argument `shell=True`
You should only do this when starting data processing for the first time. If you use it on a processed dataset, it will get overwritten.
Use blechpy.load_dataset() instead to load an existing dataset (see below)
### Initialize Parameters
```python
dat.initParams()
```
Initalizes all analysis parameters with a series of prompts.
See prompts for optional keyword params.
Primarily setups parameters for:
* Flattening Port & Channel in Electrode designations
* Common average referencing
* Labelling areas of electrodes
* Labelling digital inputs & outputs
* Labelling dead electrodes
* Clustering parameters
* Spike array creation
* PSTH creation
* Palatability/Identity Responsiveness calculations
Initial parameters are pulled from default json files in the dio subpackage.
Parameters for a dataset are written to json files in a *parameters* folder in the recording directory
Useful dat.initParams() arguments:
* data_quality='hp' -increases strictness of clustering, total # of clusters, and spike-sorting window to -0.75 to 1s.
* car_keyword = 'bilateral64' -auto assigns channel mapping to match the Omnetics-connector open ephys 64 channel EIB with 2-site implantation
* car_keyword = '2site_OE64' -auto assigns channel mapping to match Hirose-connector Open Ephys 64 channel EIB with 2-site implantation
* shell = True -bypasses GUI interface in favor of shell interface, useful if working over SSH or GUI is broken
### Basic Processing
The most basic data extraction workflow would be:
```python
dat = blechpy.dataset('/path/to/data/dir/')
dat.initParams() # See fucntion docstring, lots of optional parameters to eliminate need for user interaction
dat.extract_data() # Extracts raw data into HDF5 store
dat.create_trial_list() # Creates table of digital input triggers
dat.mark_dead_channels() # View traces and label electrodes as dead, or just pass list of dead channels
dat.mark_dead_channels([dead channel indices]) #alternatively, if you already know which chanels are dead, you can pass them as an argument
dat.common_average_reference() # Use common average referencing on data. Repalces raw with referenced data in HDF5 store
dat.detect_spikes()
dat.blech_clust_run() # Cluster data using GMM
dat.blech_clust_run(data_quality='noisy') # alternative: re-run clustering with less strict parameters
dat.sort_spikes(electrode_number) # Split, merge and label clusters as units
```
check blechpy/datastructures/dataset.py to see what functions are available
### Preferred Workflow:
This workflow uses some parameters with defualts which makes the workflow more convenient.
```python
dat = blechpy.dataset('/path/to/data/dir/')
dat.initParams(data_quality = 'hp', car_keyword = '2site_OE64') # 'hp' parameter for stricter clustering criteria, '2site_OE64' automatically maps channels to hirose-connector 64ch OEPS EIB in 2-site implantation
dat.extract_data()
dat.create_trial_list()
dat.mark_dead_channels([channel numbers]) # pass a list of dead channels (i.e. [1,2,3]) to bypass GUI marking of dead channels. Requires that you note them during drive building &/ recording
dat.common_average_reference()
dat.detect_spikes()
dat.blech_clust_run(umap=True) # Cluster with UMAP instead of GMM, supposedly better clustering
dat.sort_spikes(electrode_number) # Split, merge and label clusters as units
```
### Checking processing progress:
```python
dat.processing_status
```
Can provide an overview of basic data extraction and processing steps that need to be taken.
### Viewing a Dataset
Experiments can be easily viewed wih: `print(dat)`
A summary can also be exported to a text with: `dat.export_to_text()`
## Loading an existing dataset
```python
dat = blechpy.load_dataset() # load an existing dataset from .p file
# or
dat = blechpy.load_dataset('path/to/recording/directory')
# or
dat = blechpy.load_dataset('path/to/dataset/save/file.p')
```
## Import processed dataset into dataset framework
```python
dat = blechpy.port_in_dataset()
# or
dat = blechpy.port_in_dataset('/path/to/recording/directory')
```
# Experiments
## Creating an experiment
```python
exp = blechpy.experiment('/path/to/dir/encasing/recordings')
# or
exp = blechpy.experiment()
```
This will initalize an experiment with all recording folders within the chosen directory.
## Editing recordings
```python
exp.add_recording('/path/to/new/recording/dir/') # Add recording
exp.remove_recording('rec_label') # remove a recording dir
```
Recordings are assigned labels when added to the experiment that can be used to easily reference exerpiments.
## Held unit detection
```python
exp.detect_held_units()
```
Uses raw waveforms from sorted units to determine if units can be confidently classified as "held". Results are stored in exp.held_units as a pandas DataFrame.
This also creates plots and exports data to a created directory:
/path/to/experiment/experiment-name_analysis
# Analysis
The `blechpy.analysis` module has a lot of useful tools for analyzing your data.
Most notable is the `blechpy.analysis.poissonHMM` module which will allow fitting of the HMM models to your data. See tutorials.
%package help
Summary: Development documents and examples for blechpy
Provides: python3-blechpy-doc
%description help
See the <a href='https://nubs01.github.io/blechpy'>full documentation</a> here.
- [blechpy](#blechpy)
- [Installation](#installation)
- [Usage](#usage)
- [Datasets](#datasets)
* [Starting wit a raw dataset](#starting-wit-a-raw-dataset)
+ [Create dataset](#create-dataset)
+ [Initialize Parameters](#initialize-parameters)
+ [Basic Processing](#basic-processing)
+ [Viewing a Dataset](#viewing-a-dataset)
* [Loading an existing dataset](#loading-an-existing-dataset)
* [Import processed dataset into dataset framework](#import-processed-dataset-into-dataset-framework)
- [Experiments](#experiments)
* [Creating an experiment](#creating-an-experiment)
* [Editing recordings](#editing-recordings)
* [Held unit detection](#held-unit-detection)
<small><i><a href='http://ecotrust-canada.github.io/markdown-toc/'>Table of contents generated with markdown-toc</a></i></small>
# blechpy
This is a package to extract, process and analyze electrophysiology data recorded with Intan or OpenEphys recording systems. This package is customized to store experiment and analysis metadata for the BLECh Lab (Katz lab) @ Brandeis University, but can readily be used and customized for other labs.
# Installation
I recommend installing miniconda to handle your virtual environments
Create a miniconda environment with:
```bash
conda create -n blechpy python==3.7.13
conda activate blechpy
```
Now you can install this package simply with pip:
```bash
pip install blechpy
```
If you want to update blechpy to the latest version:
```bash
pip install blechpy -U
```
Now you can deal with all of your data from within an ipython terminal:
`ipython`
```python
import blechpy
```
### Ubuntu 20.04 LTS+
With Ubuntu 20 or higher, you will get a segmentation fault when importing blechpy because numba version 0.48 installed through pip is corrupted. You will need to reinstall it via conda
```bash
conda install numba=0.48.0
```
# Usage
blechpy handles experimental metadata using data_objects which are tied to a directory encompassing some level of data. Existing types of data_objects include:
* dataset
* object for a single recording session
* experiment
* object encompasing an ordered set of recordings from a single animal
* individual recordings must first be processed as datasets
* project
* object that can encompass multiple experiments & data groups and allow analysis or group differences
# Datasets
Right now this pipeline is only compatible with recordings done with Intan's 'one file per channel' or 'one file per signal type' recordings settings.
## Starting with a raw dataset
### Create dataset
With a brand new *shiny* recording you can initilize a dataset with:
```python
dat = blechpy.dataset('path/to/recording/directory')
# or
dat = blechpy.dataset() # for user interface to select directory
```
This will create a new dataset object and setup basic file paths.
If you're working via SSH or just want a command-line interface instead of a GUI you can use the keyword argument `shell=True`
You should only do this when starting data processing for the first time. If you use it on a processed dataset, it will get overwritten.
Use blechpy.load_dataset() instead to load an existing dataset (see below)
### Initialize Parameters
```python
dat.initParams()
```
Initalizes all analysis parameters with a series of prompts.
See prompts for optional keyword params.
Primarily setups parameters for:
* Flattening Port & Channel in Electrode designations
* Common average referencing
* Labelling areas of electrodes
* Labelling digital inputs & outputs
* Labelling dead electrodes
* Clustering parameters
* Spike array creation
* PSTH creation
* Palatability/Identity Responsiveness calculations
Initial parameters are pulled from default json files in the dio subpackage.
Parameters for a dataset are written to json files in a *parameters* folder in the recording directory
Useful dat.initParams() arguments:
* data_quality='hp' -increases strictness of clustering, total # of clusters, and spike-sorting window to -0.75 to 1s.
* car_keyword = 'bilateral64' -auto assigns channel mapping to match the Omnetics-connector open ephys 64 channel EIB with 2-site implantation
* car_keyword = '2site_OE64' -auto assigns channel mapping to match Hirose-connector Open Ephys 64 channel EIB with 2-site implantation
* shell = True -bypasses GUI interface in favor of shell interface, useful if working over SSH or GUI is broken
### Basic Processing
The most basic data extraction workflow would be:
```python
dat = blechpy.dataset('/path/to/data/dir/')
dat.initParams() # See fucntion docstring, lots of optional parameters to eliminate need for user interaction
dat.extract_data() # Extracts raw data into HDF5 store
dat.create_trial_list() # Creates table of digital input triggers
dat.mark_dead_channels() # View traces and label electrodes as dead, or just pass list of dead channels
dat.mark_dead_channels([dead channel indices]) #alternatively, if you already know which chanels are dead, you can pass them as an argument
dat.common_average_reference() # Use common average referencing on data. Repalces raw with referenced data in HDF5 store
dat.detect_spikes()
dat.blech_clust_run() # Cluster data using GMM
dat.blech_clust_run(data_quality='noisy') # alternative: re-run clustering with less strict parameters
dat.sort_spikes(electrode_number) # Split, merge and label clusters as units
```
check blechpy/datastructures/dataset.py to see what functions are available
### Preferred Workflow:
This workflow uses some parameters with defualts which makes the workflow more convenient.
```python
dat = blechpy.dataset('/path/to/data/dir/')
dat.initParams(data_quality = 'hp', car_keyword = '2site_OE64') # 'hp' parameter for stricter clustering criteria, '2site_OE64' automatically maps channels to hirose-connector 64ch OEPS EIB in 2-site implantation
dat.extract_data()
dat.create_trial_list()
dat.mark_dead_channels([channel numbers]) # pass a list of dead channels (i.e. [1,2,3]) to bypass GUI marking of dead channels. Requires that you note them during drive building &/ recording
dat.common_average_reference()
dat.detect_spikes()
dat.blech_clust_run(umap=True) # Cluster with UMAP instead of GMM, supposedly better clustering
dat.sort_spikes(electrode_number) # Split, merge and label clusters as units
```
### Checking processing progress:
```python
dat.processing_status
```
Can provide an overview of basic data extraction and processing steps that need to be taken.
### Viewing a Dataset
Experiments can be easily viewed wih: `print(dat)`
A summary can also be exported to a text with: `dat.export_to_text()`
## Loading an existing dataset
```python
dat = blechpy.load_dataset() # load an existing dataset from .p file
# or
dat = blechpy.load_dataset('path/to/recording/directory')
# or
dat = blechpy.load_dataset('path/to/dataset/save/file.p')
```
## Import processed dataset into dataset framework
```python
dat = blechpy.port_in_dataset()
# or
dat = blechpy.port_in_dataset('/path/to/recording/directory')
```
# Experiments
## Creating an experiment
```python
exp = blechpy.experiment('/path/to/dir/encasing/recordings')
# or
exp = blechpy.experiment()
```
This will initalize an experiment with all recording folders within the chosen directory.
## Editing recordings
```python
exp.add_recording('/path/to/new/recording/dir/') # Add recording
exp.remove_recording('rec_label') # remove a recording dir
```
Recordings are assigned labels when added to the experiment that can be used to easily reference exerpiments.
## Held unit detection
```python
exp.detect_held_units()
```
Uses raw waveforms from sorted units to determine if units can be confidently classified as "held". Results are stored in exp.held_units as a pandas DataFrame.
This also creates plots and exports data to a created directory:
/path/to/experiment/experiment-name_analysis
# Analysis
The `blechpy.analysis` module has a lot of useful tools for analyzing your data.
Most notable is the `blechpy.analysis.poissonHMM` module which will allow fitting of the HMM models to your data. See tutorials.
%prep
%autosetup -n blechpy-2.1.39
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-blechpy -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.39-1
- Package Spec generated
|