1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
|
%global _empty_manifest_terminate_build 0
Name: python-blis
Version: 0.9.1
Release: 1
Summary: The Blis BLAS-like linear algebra library, as a self-contained C-extension.
License: BSD
URL: https://github.com/explosion/cython-blis
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/74/1e/18f5068e5c4f2e10248f65bc0f799e9017f70749fa3f5c9fdd30be179784/blis-0.9.1.tar.gz
Requires: python3-numpy
%description
<a href="https://explosion.ai"><img src="https://explosion.ai/assets/img/logo.svg" width="125" height="125" align="right" /></a>
# Cython BLIS: Fast BLAS-like operations from Python and Cython, without the tears
This repository provides the [Blis linear algebra](https://github.com/flame/blis)
routines as a self-contained Python C-extension.
Currently, we only supports single-threaded execution, as this is actually best for our workloads (ML inference).
[](https://dev.azure.com/explosion-ai/public/_build?definitionId=6)
[](https://pypi.python.org/pypi/blis)
[](https://anaconda.org/conda-forge/cython-blis)
[](https://github.com/explosion/wheelwright/releases)
## Installation
You can install the package via pip, first making sure that `pip`, `setuptools`,
and `wheel` are up-to-date:
```bash
pip install -U pip setuptools wheel
pip install blis
```
Wheels should be available, so installation should be fast. If you want to install from source and you're on Windows, you'll need to install LLVM.
### Building BLIS for alternative architectures
The provided wheels should work on x86_64 and osx/arm64 architectures. Unfortunately we do not currently know a way to provide different wheels for alternative architectures, and we cannot provide a single binary that works everywhere. So if the wheel doesn't work for your CPU, you'll need to specify source distribution, and tell Blis your CPU architecture using the `BLIS_ARCH` environment variable.
#### a) Install with auto-detected CPU support
```bash
pip install spacy --no-binary blis
```
#### b) Install using an existing configuration
Provide an architecture from the [supported configurations](https://github.com/explosion/cython-blis/tree/v0.9.0/blis/_src/make).
```bash
BLIS_ARCH="power9" pip install spacy --no-binary blis
```
#### c) Install with generic arch support
> ⚠️ `generic` is not optimized for any particular CPU and is extremely slow. Only recommended for testing!
```bash
BLIS_ARCH="generic" pip install spacy --no-binary blis
```
#### d) Build specific support
In order to compile Blis, `cython-blis` bundles makefile scripts for specific architectures, that are compiled by running the Blis build system and logging the commands. We do not yet have logs for every architecture, as there are some architectures we have not had access to.
[See here](https://github.com/flame/blis/blob/0.9.0/config_registry) for list of
architectures. For example, here's how to build support for the Intel architecture `knl`:
```bash
git clone https://github.com/explosion/cython-blis && cd cython-blis
git pull && git submodule init && git submodule update && git submodule status
python3 -m venv venv
source venv/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
./bin/generate-make-jsonl linux knl
BLIS_ARCH="knl" python setup.py build_ext --inplace
BLIS_ARCH="knl" python setup.py bdist_wheel
```
Fingers crossed, this will build you a wheel that supports your platform. You
could then [submit a PR](https://github.com/explosion/cython-blis/pulls) with
the `blis/_src/make/linux-knl.jsonl` and
`blis/_src/include/linux-knl/blis.h` files so that you can run:
```bash
BLIS_ARCH="knl" pip install --no-binary=blis
```
## Usage
Two APIs are provided: a high-level Python API, and direct
[Cython](http://cython.org) access, which provides fused-type, nogil
Cython bindings to the underlying Blis linear algebra library. Fused
types are a simple template mechanism, allowing just a touch of
compile-time generic programming:
```python
cimport blis.cy
A = <float*>calloc(nN * nI, sizeof(float))
B = <float*>calloc(nO * nI, sizeof(float))
C = <float*>calloc(nr_b0 * nr_b1, sizeof(float))
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.NO_TRANSPOSE,
nO, nI, nN,
1.0, A, nI, 1, B, nO, 1,
1.0, C, nO, 1)
```
Bindings have been added as we've needed them. Please submit pull requests if
the library is missing some functions you require.
## Development
To build the source package, you should run the following command:
```bash
./bin/update-vendored-source
```
This populates the `blis/_src` folder for the various architectures, using the
`flame-blis` submodule.
## Updating the build files
In order to compile the Blis sources, we use jsonl files that provide the
explicit compiler flags. We build these jsonl files by running Blis's build
system, and then converting the log. This avoids us having to replicate the
build system within Python: we just use the jsonl to make a bunch of subprocess
calls. To support a new OS/architecture combination, we have to provide the
jsonl file and the header.
### Linux
The Linux build files need to be produced from within the manylinux2014
Docker container, so that they will be compatible with the wheel building
process.
First, install docker. Then do the following to start the container:
sudo docker run -it quay.io/pypa/manylinux2014_x86_64:latest
Once within the container, the following commands should check out the repo and
build the jsonl files for the generic arch:
mkdir /usr/local/repos
cd /usr/local/repos
git clone https://github.com/explosion/cython-blis && cd cython-blis
git pull && git submodule init && git submodule update && git submodule
status
/opt/python/cp36-cp36m/bin/python -m venv env3.6
source env3.6/bin/activate
pip install -r requirements.txt
./bin/generate-make-jsonl linux generic --export
BLIS_ARCH=generic python setup.py build_ext --inplace
# N.B.: don't copy to /tmp, docker cp doesn't work from there.
cp blis/_src/include/linux-generic/blis.h /linux-generic-blis.h
cp blis/_src/make/linux-generic.jsonl /
Then from a new terminal, retrieve the two files we need out of the container:
sudo docker ps -l # Get the container ID
# When I'm in Vagrant, I need to go via cat -- but then I end up with dummy
# lines at the top and bottom. Sigh. If you don't have that problem and
# sudo docker cp just works, just copy the file.
sudo docker cp aa9d42588791:/linux-generic-blis.h - | cat > linux-generic-blis.h
sudo docker cp aa9d42588791:/linux-generic.jsonl - | cat > linux-generic.jsonl
%package -n python3-blis
Summary: The Blis BLAS-like linear algebra library, as a self-contained C-extension.
Provides: python-blis
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-blis
<a href="https://explosion.ai"><img src="https://explosion.ai/assets/img/logo.svg" width="125" height="125" align="right" /></a>
# Cython BLIS: Fast BLAS-like operations from Python and Cython, without the tears
This repository provides the [Blis linear algebra](https://github.com/flame/blis)
routines as a self-contained Python C-extension.
Currently, we only supports single-threaded execution, as this is actually best for our workloads (ML inference).
[](https://dev.azure.com/explosion-ai/public/_build?definitionId=6)
[](https://pypi.python.org/pypi/blis)
[](https://anaconda.org/conda-forge/cython-blis)
[](https://github.com/explosion/wheelwright/releases)
## Installation
You can install the package via pip, first making sure that `pip`, `setuptools`,
and `wheel` are up-to-date:
```bash
pip install -U pip setuptools wheel
pip install blis
```
Wheels should be available, so installation should be fast. If you want to install from source and you're on Windows, you'll need to install LLVM.
### Building BLIS for alternative architectures
The provided wheels should work on x86_64 and osx/arm64 architectures. Unfortunately we do not currently know a way to provide different wheels for alternative architectures, and we cannot provide a single binary that works everywhere. So if the wheel doesn't work for your CPU, you'll need to specify source distribution, and tell Blis your CPU architecture using the `BLIS_ARCH` environment variable.
#### a) Install with auto-detected CPU support
```bash
pip install spacy --no-binary blis
```
#### b) Install using an existing configuration
Provide an architecture from the [supported configurations](https://github.com/explosion/cython-blis/tree/v0.9.0/blis/_src/make).
```bash
BLIS_ARCH="power9" pip install spacy --no-binary blis
```
#### c) Install with generic arch support
> ⚠️ `generic` is not optimized for any particular CPU and is extremely slow. Only recommended for testing!
```bash
BLIS_ARCH="generic" pip install spacy --no-binary blis
```
#### d) Build specific support
In order to compile Blis, `cython-blis` bundles makefile scripts for specific architectures, that are compiled by running the Blis build system and logging the commands. We do not yet have logs for every architecture, as there are some architectures we have not had access to.
[See here](https://github.com/flame/blis/blob/0.9.0/config_registry) for list of
architectures. For example, here's how to build support for the Intel architecture `knl`:
```bash
git clone https://github.com/explosion/cython-blis && cd cython-blis
git pull && git submodule init && git submodule update && git submodule status
python3 -m venv venv
source venv/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
./bin/generate-make-jsonl linux knl
BLIS_ARCH="knl" python setup.py build_ext --inplace
BLIS_ARCH="knl" python setup.py bdist_wheel
```
Fingers crossed, this will build you a wheel that supports your platform. You
could then [submit a PR](https://github.com/explosion/cython-blis/pulls) with
the `blis/_src/make/linux-knl.jsonl` and
`blis/_src/include/linux-knl/blis.h` files so that you can run:
```bash
BLIS_ARCH="knl" pip install --no-binary=blis
```
## Usage
Two APIs are provided: a high-level Python API, and direct
[Cython](http://cython.org) access, which provides fused-type, nogil
Cython bindings to the underlying Blis linear algebra library. Fused
types are a simple template mechanism, allowing just a touch of
compile-time generic programming:
```python
cimport blis.cy
A = <float*>calloc(nN * nI, sizeof(float))
B = <float*>calloc(nO * nI, sizeof(float))
C = <float*>calloc(nr_b0 * nr_b1, sizeof(float))
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.NO_TRANSPOSE,
nO, nI, nN,
1.0, A, nI, 1, B, nO, 1,
1.0, C, nO, 1)
```
Bindings have been added as we've needed them. Please submit pull requests if
the library is missing some functions you require.
## Development
To build the source package, you should run the following command:
```bash
./bin/update-vendored-source
```
This populates the `blis/_src` folder for the various architectures, using the
`flame-blis` submodule.
## Updating the build files
In order to compile the Blis sources, we use jsonl files that provide the
explicit compiler flags. We build these jsonl files by running Blis's build
system, and then converting the log. This avoids us having to replicate the
build system within Python: we just use the jsonl to make a bunch of subprocess
calls. To support a new OS/architecture combination, we have to provide the
jsonl file and the header.
### Linux
The Linux build files need to be produced from within the manylinux2014
Docker container, so that they will be compatible with the wheel building
process.
First, install docker. Then do the following to start the container:
sudo docker run -it quay.io/pypa/manylinux2014_x86_64:latest
Once within the container, the following commands should check out the repo and
build the jsonl files for the generic arch:
mkdir /usr/local/repos
cd /usr/local/repos
git clone https://github.com/explosion/cython-blis && cd cython-blis
git pull && git submodule init && git submodule update && git submodule
status
/opt/python/cp36-cp36m/bin/python -m venv env3.6
source env3.6/bin/activate
pip install -r requirements.txt
./bin/generate-make-jsonl linux generic --export
BLIS_ARCH=generic python setup.py build_ext --inplace
# N.B.: don't copy to /tmp, docker cp doesn't work from there.
cp blis/_src/include/linux-generic/blis.h /linux-generic-blis.h
cp blis/_src/make/linux-generic.jsonl /
Then from a new terminal, retrieve the two files we need out of the container:
sudo docker ps -l # Get the container ID
# When I'm in Vagrant, I need to go via cat -- but then I end up with dummy
# lines at the top and bottom. Sigh. If you don't have that problem and
# sudo docker cp just works, just copy the file.
sudo docker cp aa9d42588791:/linux-generic-blis.h - | cat > linux-generic-blis.h
sudo docker cp aa9d42588791:/linux-generic.jsonl - | cat > linux-generic.jsonl
%package help
Summary: Development documents and examples for blis
Provides: python3-blis-doc
%description help
<a href="https://explosion.ai"><img src="https://explosion.ai/assets/img/logo.svg" width="125" height="125" align="right" /></a>
# Cython BLIS: Fast BLAS-like operations from Python and Cython, without the tears
This repository provides the [Blis linear algebra](https://github.com/flame/blis)
routines as a self-contained Python C-extension.
Currently, we only supports single-threaded execution, as this is actually best for our workloads (ML inference).
[](https://dev.azure.com/explosion-ai/public/_build?definitionId=6)
[](https://pypi.python.org/pypi/blis)
[](https://anaconda.org/conda-forge/cython-blis)
[](https://github.com/explosion/wheelwright/releases)
## Installation
You can install the package via pip, first making sure that `pip`, `setuptools`,
and `wheel` are up-to-date:
```bash
pip install -U pip setuptools wheel
pip install blis
```
Wheels should be available, so installation should be fast. If you want to install from source and you're on Windows, you'll need to install LLVM.
### Building BLIS for alternative architectures
The provided wheels should work on x86_64 and osx/arm64 architectures. Unfortunately we do not currently know a way to provide different wheels for alternative architectures, and we cannot provide a single binary that works everywhere. So if the wheel doesn't work for your CPU, you'll need to specify source distribution, and tell Blis your CPU architecture using the `BLIS_ARCH` environment variable.
#### a) Install with auto-detected CPU support
```bash
pip install spacy --no-binary blis
```
#### b) Install using an existing configuration
Provide an architecture from the [supported configurations](https://github.com/explosion/cython-blis/tree/v0.9.0/blis/_src/make).
```bash
BLIS_ARCH="power9" pip install spacy --no-binary blis
```
#### c) Install with generic arch support
> ⚠️ `generic` is not optimized for any particular CPU and is extremely slow. Only recommended for testing!
```bash
BLIS_ARCH="generic" pip install spacy --no-binary blis
```
#### d) Build specific support
In order to compile Blis, `cython-blis` bundles makefile scripts for specific architectures, that are compiled by running the Blis build system and logging the commands. We do not yet have logs for every architecture, as there are some architectures we have not had access to.
[See here](https://github.com/flame/blis/blob/0.9.0/config_registry) for list of
architectures. For example, here's how to build support for the Intel architecture `knl`:
```bash
git clone https://github.com/explosion/cython-blis && cd cython-blis
git pull && git submodule init && git submodule update && git submodule status
python3 -m venv venv
source venv/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
./bin/generate-make-jsonl linux knl
BLIS_ARCH="knl" python setup.py build_ext --inplace
BLIS_ARCH="knl" python setup.py bdist_wheel
```
Fingers crossed, this will build you a wheel that supports your platform. You
could then [submit a PR](https://github.com/explosion/cython-blis/pulls) with
the `blis/_src/make/linux-knl.jsonl` and
`blis/_src/include/linux-knl/blis.h` files so that you can run:
```bash
BLIS_ARCH="knl" pip install --no-binary=blis
```
## Usage
Two APIs are provided: a high-level Python API, and direct
[Cython](http://cython.org) access, which provides fused-type, nogil
Cython bindings to the underlying Blis linear algebra library. Fused
types are a simple template mechanism, allowing just a touch of
compile-time generic programming:
```python
cimport blis.cy
A = <float*>calloc(nN * nI, sizeof(float))
B = <float*>calloc(nO * nI, sizeof(float))
C = <float*>calloc(nr_b0 * nr_b1, sizeof(float))
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.NO_TRANSPOSE,
nO, nI, nN,
1.0, A, nI, 1, B, nO, 1,
1.0, C, nO, 1)
```
Bindings have been added as we've needed them. Please submit pull requests if
the library is missing some functions you require.
## Development
To build the source package, you should run the following command:
```bash
./bin/update-vendored-source
```
This populates the `blis/_src` folder for the various architectures, using the
`flame-blis` submodule.
## Updating the build files
In order to compile the Blis sources, we use jsonl files that provide the
explicit compiler flags. We build these jsonl files by running Blis's build
system, and then converting the log. This avoids us having to replicate the
build system within Python: we just use the jsonl to make a bunch of subprocess
calls. To support a new OS/architecture combination, we have to provide the
jsonl file and the header.
### Linux
The Linux build files need to be produced from within the manylinux2014
Docker container, so that they will be compatible with the wheel building
process.
First, install docker. Then do the following to start the container:
sudo docker run -it quay.io/pypa/manylinux2014_x86_64:latest
Once within the container, the following commands should check out the repo and
build the jsonl files for the generic arch:
mkdir /usr/local/repos
cd /usr/local/repos
git clone https://github.com/explosion/cython-blis && cd cython-blis
git pull && git submodule init && git submodule update && git submodule
status
/opt/python/cp36-cp36m/bin/python -m venv env3.6
source env3.6/bin/activate
pip install -r requirements.txt
./bin/generate-make-jsonl linux generic --export
BLIS_ARCH=generic python setup.py build_ext --inplace
# N.B.: don't copy to /tmp, docker cp doesn't work from there.
cp blis/_src/include/linux-generic/blis.h /linux-generic-blis.h
cp blis/_src/make/linux-generic.jsonl /
Then from a new terminal, retrieve the two files we need out of the container:
sudo docker ps -l # Get the container ID
# When I'm in Vagrant, I need to go via cat -- but then I end up with dummy
# lines at the top and bottom. Sigh. If you don't have that problem and
# sudo docker cp just works, just copy the file.
sudo docker cp aa9d42588791:/linux-generic-blis.h - | cat > linux-generic-blis.h
sudo docker cp aa9d42588791:/linux-generic.jsonl - | cat > linux-generic.jsonl
%prep
%autosetup -n blis-0.9.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-blis -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.1-1
- Package Spec generated
|