1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
%global _empty_manifest_terminate_build 0
Name: python-bqtools-json
Version: 1.0.5
Release: 1
Summary: A Big Query json utility package
License: Apache Software License
URL: https://github.com/hsbc/bqtools
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/6a/4d/2967729e8807462c6bd741315be39e48f56cb8876c30f5c414c158040528/bqtools-json-1.0.5.tar.gz
BuildArch: noarch
Requires: python3-jinja2
Requires: python3-google-cloud
Requires: python3-google-cloud-bigquery
Requires: python3-google-cloud-storage
Requires: python3-google-cloud-logging
Requires: python3-absl-py
Requires: python3-boto
Requires: python3-google-api-python-client
Requires: python3-grpcio
%description
This is bqtools a handy set of utils to help create big query tables from json objects and make them into tables (so get the schema) and to create json new line files.
Plus a set of common functions to ease writing biq query python code
Goals
* Simplify handling and move between big query stryuctured data and json data
* Allow you to create big query table schemas from json structures (as resource or schema objects) uses reflection of types
* Provides easy generation of views for day partitioned tabled
* head - latest data
* diff views for time snap shots of data i.e. each day partition has current view of data
* Calculate valid json structures from representative json data that can be used as basis of big query schemas
* Clean json data such that it can be loaded into big query
* Replace bare lists with dictionaries
* Replace field names with valid values that can be column names in big query (removes spaces, characters not allowed in field names using same algorithms big query uses when auto detecting schemas)
* Encodes json output of dates, datetimes, times, timedeltas encoded in format acceptable for big query corresponding field types
* Generate code for bq command line tool from bq table structures
* Simplify common tasks of handling big query data
* Basic tests on dataset or tables existing
* Schema patching compare an existing schema to a template json object calculate if changed and generate a merged schema that can be used in a patch
* Flattening views to avoid view depth limits
```
import bqtools
# if you load a json object say something like
foo = {
"id":1,
"description":""
"aboolean":False
}
# generate a schema
table = {
"type":"TABLE",
"location":os.environ["location"],
"tableReference":{
"projectId": os.environ["projectid"],
"datasetId": os.environ["dataset"],
"tableId": key
},
"timePartitioning":{
"type": "DAY",
"expirationMs": "94608000000"
},
"schema": {}
}
# use bqtools to create a schema structure
table["schema"]["fields"] = bqtools.get_bq_schema_from_json_repr(foo)
```
Demonstrates some of power of tools via [bqsync](https://github.com/hsbc/bqtools/blob/master/BQSYNCUSAGE.md) that is installed if you install via pip.
pip install bqtools-json
Or you can find the source for this [here](https://github.com/hsbc/bqtools/blob/master/bqtools/bqsync)
Also provides means to handle views across environments supports SQL views based upon Jinja templates. So you can "configure" views for different environments.
Provides support for calculating view dependencies such views can be applied in parallel tranches.
Provides support for calculating authorised views based on set of views "compiled"
Compilation flattens views to lower view depth but automatically does not flatten authorised views to keep access to data tight as feasible.
%package -n python3-bqtools-json
Summary: A Big Query json utility package
Provides: python-bqtools-json
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-bqtools-json
This is bqtools a handy set of utils to help create big query tables from json objects and make them into tables (so get the schema) and to create json new line files.
Plus a set of common functions to ease writing biq query python code
Goals
* Simplify handling and move between big query stryuctured data and json data
* Allow you to create big query table schemas from json structures (as resource or schema objects) uses reflection of types
* Provides easy generation of views for day partitioned tabled
* head - latest data
* diff views for time snap shots of data i.e. each day partition has current view of data
* Calculate valid json structures from representative json data that can be used as basis of big query schemas
* Clean json data such that it can be loaded into big query
* Replace bare lists with dictionaries
* Replace field names with valid values that can be column names in big query (removes spaces, characters not allowed in field names using same algorithms big query uses when auto detecting schemas)
* Encodes json output of dates, datetimes, times, timedeltas encoded in format acceptable for big query corresponding field types
* Generate code for bq command line tool from bq table structures
* Simplify common tasks of handling big query data
* Basic tests on dataset or tables existing
* Schema patching compare an existing schema to a template json object calculate if changed and generate a merged schema that can be used in a patch
* Flattening views to avoid view depth limits
```
import bqtools
# if you load a json object say something like
foo = {
"id":1,
"description":""
"aboolean":False
}
# generate a schema
table = {
"type":"TABLE",
"location":os.environ["location"],
"tableReference":{
"projectId": os.environ["projectid"],
"datasetId": os.environ["dataset"],
"tableId": key
},
"timePartitioning":{
"type": "DAY",
"expirationMs": "94608000000"
},
"schema": {}
}
# use bqtools to create a schema structure
table["schema"]["fields"] = bqtools.get_bq_schema_from_json_repr(foo)
```
Demonstrates some of power of tools via [bqsync](https://github.com/hsbc/bqtools/blob/master/BQSYNCUSAGE.md) that is installed if you install via pip.
pip install bqtools-json
Or you can find the source for this [here](https://github.com/hsbc/bqtools/blob/master/bqtools/bqsync)
Also provides means to handle views across environments supports SQL views based upon Jinja templates. So you can "configure" views for different environments.
Provides support for calculating view dependencies such views can be applied in parallel tranches.
Provides support for calculating authorised views based on set of views "compiled"
Compilation flattens views to lower view depth but automatically does not flatten authorised views to keep access to data tight as feasible.
%package help
Summary: Development documents and examples for bqtools-json
Provides: python3-bqtools-json-doc
%description help
This is bqtools a handy set of utils to help create big query tables from json objects and make them into tables (so get the schema) and to create json new line files.
Plus a set of common functions to ease writing biq query python code
Goals
* Simplify handling and move between big query stryuctured data and json data
* Allow you to create big query table schemas from json structures (as resource or schema objects) uses reflection of types
* Provides easy generation of views for day partitioned tabled
* head - latest data
* diff views for time snap shots of data i.e. each day partition has current view of data
* Calculate valid json structures from representative json data that can be used as basis of big query schemas
* Clean json data such that it can be loaded into big query
* Replace bare lists with dictionaries
* Replace field names with valid values that can be column names in big query (removes spaces, characters not allowed in field names using same algorithms big query uses when auto detecting schemas)
* Encodes json output of dates, datetimes, times, timedeltas encoded in format acceptable for big query corresponding field types
* Generate code for bq command line tool from bq table structures
* Simplify common tasks of handling big query data
* Basic tests on dataset or tables existing
* Schema patching compare an existing schema to a template json object calculate if changed and generate a merged schema that can be used in a patch
* Flattening views to avoid view depth limits
```
import bqtools
# if you load a json object say something like
foo = {
"id":1,
"description":""
"aboolean":False
}
# generate a schema
table = {
"type":"TABLE",
"location":os.environ["location"],
"tableReference":{
"projectId": os.environ["projectid"],
"datasetId": os.environ["dataset"],
"tableId": key
},
"timePartitioning":{
"type": "DAY",
"expirationMs": "94608000000"
},
"schema": {}
}
# use bqtools to create a schema structure
table["schema"]["fields"] = bqtools.get_bq_schema_from_json_repr(foo)
```
Demonstrates some of power of tools via [bqsync](https://github.com/hsbc/bqtools/blob/master/BQSYNCUSAGE.md) that is installed if you install via pip.
pip install bqtools-json
Or you can find the source for this [here](https://github.com/hsbc/bqtools/blob/master/bqtools/bqsync)
Also provides means to handle views across environments supports SQL views based upon Jinja templates. So you can "configure" views for different environments.
Provides support for calculating view dependencies such views can be applied in parallel tranches.
Provides support for calculating authorised views based on set of views "compiled"
Compilation flattens views to lower view depth but automatically does not flatten authorised views to keep access to data tight as feasible.
%prep
%autosetup -n bqtools-json-1.0.5
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-bqtools-json -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.5-1
- Package Spec generated
|