1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
%global _empty_manifest_terminate_build 0
Name: python-BRAILS
Version: 3.0.1
Release: 1
Summary: Building Recognition Using AI at Large-Scale
License: BSD 3-Clause
URL: https://github.com/NHERI-SimCenter/BRAILS
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f8/0c/9f3c76990a0ab965337435f2b2d57d202d880a5731b6f54eb477a28c5b87/BRAILS-3.0.1.tar.gz
BuildArch: noarch
%description
## What is BRAILS?
BRAILS (Building Recognition using AI at Large-Scale) provides a set of Python modules that utilize deep learning (DL), and computer vision (CV) techniques to extract information from satellite and street level images. The BRAILS framework also provides turn-key applications allowing users to put individual modules together to determine multiple attributes in a single pass or train general-purpose image classification, object detection, or semantic segmentation models.
## Documentation
Online documentation is available at <a href="https://nheri-simcenter.github.io/BRAILS-Documentation/index.html">https://nheri-simcenter.github.io/BRAILS-Documentation</a>.
## Quickstart
### Installation
The easiest way to install the latest version of BRAILS is using ``pip``:
```
pip install git+https://github.com/NHERI-SimCenter/BRAILS
```
### Example: InventoryGenerator Workflow
This example demonstrates how to use the ``InventoryGenerator`` method embedded in BRAILS to generate regional-level inventories.
The primary input to ``InventoryGenerator`` is location. ``InventoryGenerator`` accepts four different location input: 1) region name, 2) list of region names, 3) bounding box of a region, 4) A GeoJSON file containing building footprints.
Please note that you will need a Google API Key to run ``InventoryGenerator``.
```python
#import InventoryGenerator:
from brails.InventoryGenerator import InventoryGenerator
# Initialize InventoryGenerator:
invGenerator = InventoryGenerator(location='Berkeley, CA',
nbldgs=100, randomSelection=True,
GoogleAPIKey="")
# Run InventoryGenerator to generate an inventory for the entered location:
# To run InventoryGenerator for all enabled attributes set attributes='all':
invGenerator.generate(attributes=['numstories','roofshape','buildingheight'])
# View generated inventory:
invGenerator.inventory
```
## Acknowledgements
This work is based on material supported by the National Science Foundation under grants CMMI 1612843 and CMMI 2131111.
## Contact
NHERI-SimCenter nheri-simcenter@berkeley.edu
## How to cite
```
@software{cetiner_2022_7132010,
author = {Barbaros Cetiner and
Charles Wang and
Frank McKenna and
Sascha Hornauer and
Yunhui Guo},
title = {BRAILS Release v3.0.0},
month = sep,
year = 2022,
note = {{This work is based on material supported by the
National Science Foundation under grants CMMI
1612843 and CMMI 2131111}},
publisher = {Zenodo},
version = {v3.0.0},
doi = {10.5281/zenodo.7132010},
url = {https://doi.org/10.5281/zenodo.7132010}
}
```
%package -n python3-BRAILS
Summary: Building Recognition Using AI at Large-Scale
Provides: python-BRAILS
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-BRAILS
## What is BRAILS?
BRAILS (Building Recognition using AI at Large-Scale) provides a set of Python modules that utilize deep learning (DL), and computer vision (CV) techniques to extract information from satellite and street level images. The BRAILS framework also provides turn-key applications allowing users to put individual modules together to determine multiple attributes in a single pass or train general-purpose image classification, object detection, or semantic segmentation models.
## Documentation
Online documentation is available at <a href="https://nheri-simcenter.github.io/BRAILS-Documentation/index.html">https://nheri-simcenter.github.io/BRAILS-Documentation</a>.
## Quickstart
### Installation
The easiest way to install the latest version of BRAILS is using ``pip``:
```
pip install git+https://github.com/NHERI-SimCenter/BRAILS
```
### Example: InventoryGenerator Workflow
This example demonstrates how to use the ``InventoryGenerator`` method embedded in BRAILS to generate regional-level inventories.
The primary input to ``InventoryGenerator`` is location. ``InventoryGenerator`` accepts four different location input: 1) region name, 2) list of region names, 3) bounding box of a region, 4) A GeoJSON file containing building footprints.
Please note that you will need a Google API Key to run ``InventoryGenerator``.
```python
#import InventoryGenerator:
from brails.InventoryGenerator import InventoryGenerator
# Initialize InventoryGenerator:
invGenerator = InventoryGenerator(location='Berkeley, CA',
nbldgs=100, randomSelection=True,
GoogleAPIKey="")
# Run InventoryGenerator to generate an inventory for the entered location:
# To run InventoryGenerator for all enabled attributes set attributes='all':
invGenerator.generate(attributes=['numstories','roofshape','buildingheight'])
# View generated inventory:
invGenerator.inventory
```
## Acknowledgements
This work is based on material supported by the National Science Foundation under grants CMMI 1612843 and CMMI 2131111.
## Contact
NHERI-SimCenter nheri-simcenter@berkeley.edu
## How to cite
```
@software{cetiner_2022_7132010,
author = {Barbaros Cetiner and
Charles Wang and
Frank McKenna and
Sascha Hornauer and
Yunhui Guo},
title = {BRAILS Release v3.0.0},
month = sep,
year = 2022,
note = {{This work is based on material supported by the
National Science Foundation under grants CMMI
1612843 and CMMI 2131111}},
publisher = {Zenodo},
version = {v3.0.0},
doi = {10.5281/zenodo.7132010},
url = {https://doi.org/10.5281/zenodo.7132010}
}
```
%package help
Summary: Development documents and examples for BRAILS
Provides: python3-BRAILS-doc
%description help
## What is BRAILS?
BRAILS (Building Recognition using AI at Large-Scale) provides a set of Python modules that utilize deep learning (DL), and computer vision (CV) techniques to extract information from satellite and street level images. The BRAILS framework also provides turn-key applications allowing users to put individual modules together to determine multiple attributes in a single pass or train general-purpose image classification, object detection, or semantic segmentation models.
## Documentation
Online documentation is available at <a href="https://nheri-simcenter.github.io/BRAILS-Documentation/index.html">https://nheri-simcenter.github.io/BRAILS-Documentation</a>.
## Quickstart
### Installation
The easiest way to install the latest version of BRAILS is using ``pip``:
```
pip install git+https://github.com/NHERI-SimCenter/BRAILS
```
### Example: InventoryGenerator Workflow
This example demonstrates how to use the ``InventoryGenerator`` method embedded in BRAILS to generate regional-level inventories.
The primary input to ``InventoryGenerator`` is location. ``InventoryGenerator`` accepts four different location input: 1) region name, 2) list of region names, 3) bounding box of a region, 4) A GeoJSON file containing building footprints.
Please note that you will need a Google API Key to run ``InventoryGenerator``.
```python
#import InventoryGenerator:
from brails.InventoryGenerator import InventoryGenerator
# Initialize InventoryGenerator:
invGenerator = InventoryGenerator(location='Berkeley, CA',
nbldgs=100, randomSelection=True,
GoogleAPIKey="")
# Run InventoryGenerator to generate an inventory for the entered location:
# To run InventoryGenerator for all enabled attributes set attributes='all':
invGenerator.generate(attributes=['numstories','roofshape','buildingheight'])
# View generated inventory:
invGenerator.inventory
```
## Acknowledgements
This work is based on material supported by the National Science Foundation under grants CMMI 1612843 and CMMI 2131111.
## Contact
NHERI-SimCenter nheri-simcenter@berkeley.edu
## How to cite
```
@software{cetiner_2022_7132010,
author = {Barbaros Cetiner and
Charles Wang and
Frank McKenna and
Sascha Hornauer and
Yunhui Guo},
title = {BRAILS Release v3.0.0},
month = sep,
year = 2022,
note = {{This work is based on material supported by the
National Science Foundation under grants CMMI
1612843 and CMMI 2131111}},
publisher = {Zenodo},
version = {v3.0.0},
doi = {10.5281/zenodo.7132010},
url = {https://doi.org/10.5281/zenodo.7132010}
}
```
%prep
%autosetup -n BRAILS-3.0.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-BRAILS -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 3.0.1-1
- Package Spec generated
|