summaryrefslogtreecommitdiff
path: root/python-caches.spec
blob: eba6f9ae234d6b2349e39b0fd7a3618fedb41937 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
%global _empty_manifest_terminate_build 0
Name:		python-caches
Version:	2.0.2
Release:	1
Summary:	Python caching backed by Redis
License:	MIT
URL:		http://github.com/jaymon/caches
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/f9/92/eee22855612577d9de155af31896cb15bccf7b9447419157de8761dc7116/caches-2.0.2.tar.gz
BuildArch:	noarch


%description
# Caches

A Python caching library that gives a similar interface to standard Python data structures like Dict and Set but is backed by [Redis](https://redis.io).

Caches has been used in production for years across many different products, handling millions of requests.


## How to use

Caches can only use [Redis](http://redis.io).

Caches relies on setting the environment variable `CACHES_DSN`:

    caches.interface.Redis://localhost/0

If you want to cache things using more than one redis server, you can actually set multiple environment variables:

    export CACHES_DSN_1=caches.interface.Redis://somedomain.com/0#redis1
    export CACHES_DSN_2=caches.interface.Redis://someotherdomain.com/0#redis2

After you've set the environment variable, then you just need to import caches in your code:

```python
import caches
```

Caches will take care of parsing the url and creating the redis connection, automatically, so after the import Caches will be ready to use.


### Interface

All caches caching classes have a similar interface, their constructor takes a key and data:

```python
c = Cache(['foo', 'bar', 'che'])
print c.key # foo.bar.che
```

If you would like to init your cache object with a value, use the `data` `**kwarg`:

```python
c = Cache('foo', data="boom!")
print c.key # foo
print c # "boom!"
```

Each caches base caching class is meant to be extended so you can set some parameters:

* **serialize** -- boolean -- True if you want all values pickled, False if you don't (ie, you're caching ints or strings or something).

* **prefix** -- string -- This will be prepended to the key args you pass into the constructor.

* **ttl** -- integer -- time to live, how many seconds to cache the value. 0 (default) means cache forever.

* **connection_name** -- string -- if you have more than one caches dsn then you can use this to set the name of the connection you want (the name of the connection is the `#connection_name` fragment of a dsn url).

```python
class MyIntCache(Cache):
  serialize = False # don't bother to serialize values since we're storing ints
  prefix = "MyIntCache" # every key will have this prefix, change to invalidate all currently cached values
  ttl = 7200 # store each int for 2 hours
```

### Cache Classes


#### Cache

This is the traditional caching object, it sets a value into a key:

```python
c = Cache('foo')
c.data = 5 # cache 5
c += 10 # increment 5 by 10, store 15 in the cache

c.clear()
print c # None
```


#### DictCache

This caching object acts more or less like a Python [dictionary](http://docs.python.org/3/library/stdtypes.html#mapping-types-dict):

```python
c = DictCache('foo')
c['bar'] = 'b'
c['che'] = 'c'
for key, val in c.items():
  print key, val # will print "bar b" and then "che c"
```


#### SetCache

This caching object acts more or less like a Python [set](http://docs.python.org/2/library/stdtypes.html#set):

```python
c = SetCache('foo')
c.add('bar')
c.add('che')
print 'che' in c # True
```


#### SortedSetCache

This caching object acts more or less like a Python [set](http://docs.python.org/2/library/stdtypes.html#set) but has some changes:

* The `add()` method takes a tuple `(score, elem)`
* The `pop()` method will pop off the lowest score from the set, and pops a tuple `(score, elem)`
* An `rpop()` method allows you to pop the highest score from the set.
* Iterating through the set results in tuples of `(score, elem)`, not just elem like in a normal set or the `SetCache`.

```python
c = SortedSetCache('foo')
c.add((1, 'bar'))
c.add((10, 'che'))
print 'che' in c # True
print c.pop() # (1, bar)
```


#### SentinelCache

Handy for gated access:

```python
c = SentinelCache('foo')

if not c:
    print("sentinel value isn't set so do this")

if not c:
    print("sentinel value is now set so this will never run")
```


### Decorator

Caches exposes a decorator to make caching the return value of a function easy. This only works for `Cache` derived caching.

The `cached` decorator can accept a caching class and also a key function (similar to the python [built-in `sorted()` function](http://docs.python.org/2/library/functions.html#sorted) key argument), except caches key argument returns a list that can be passed to the constructor of the caching class as `*args`.

```python
import functools
from caches import Cache

@Cache.cached(key="some_cache_key")
def foo(*args):
    return functools.reduce(lambda x, y: x+y, args)

foo(1, 2) # will compute the value and cache the return value
foo(1, 2) # return value from cache

foo(1, 2, 3) # uh-oh, wrong value, our key was too static
```

Let's try again, this time with a dynamic key

```python
@Cache.cached(key=lambda *args: args)
def foo(*args):
    return functools.reduce(lambda x, y: x+y, args)

foo(1, 2) # compute and cache, key func returned [1, 2]
foo(1, 2) # grabbed from cache
foo(1, 2, 3) # compute and cache because our key func returned [1, 2, 3]
```

What about custom caches classes?

```python
class CustomCache(Cache): pass

@CustomCache.cached(key=lambda *args: args)
def foo(*args):
    return functools.reduce(lambda x, y: x+y, args)
```


## Install

Use pip from pypi:

    pip install caches

or from source using pip:

    pip install -U "git+https://github.com/jaymon/caches#egg=caches"



## License

MIT

## Other links

* [redis_collections module](https://github.com/redis-collections/redis-collections) - If you need broader/deeper support for python standard types like dict and set then check out this project. Prior to 2.0.0 Caches had a dependency on this module.
* [Dogpile](http://dogpilecache.readthedocs.org/en/latest/usage.html)





%package -n python3-caches
Summary:	Python caching backed by Redis
Provides:	python-caches
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-caches
# Caches

A Python caching library that gives a similar interface to standard Python data structures like Dict and Set but is backed by [Redis](https://redis.io).

Caches has been used in production for years across many different products, handling millions of requests.


## How to use

Caches can only use [Redis](http://redis.io).

Caches relies on setting the environment variable `CACHES_DSN`:

    caches.interface.Redis://localhost/0

If you want to cache things using more than one redis server, you can actually set multiple environment variables:

    export CACHES_DSN_1=caches.interface.Redis://somedomain.com/0#redis1
    export CACHES_DSN_2=caches.interface.Redis://someotherdomain.com/0#redis2

After you've set the environment variable, then you just need to import caches in your code:

```python
import caches
```

Caches will take care of parsing the url and creating the redis connection, automatically, so after the import Caches will be ready to use.


### Interface

All caches caching classes have a similar interface, their constructor takes a key and data:

```python
c = Cache(['foo', 'bar', 'che'])
print c.key # foo.bar.che
```

If you would like to init your cache object with a value, use the `data` `**kwarg`:

```python
c = Cache('foo', data="boom!")
print c.key # foo
print c # "boom!"
```

Each caches base caching class is meant to be extended so you can set some parameters:

* **serialize** -- boolean -- True if you want all values pickled, False if you don't (ie, you're caching ints or strings or something).

* **prefix** -- string -- This will be prepended to the key args you pass into the constructor.

* **ttl** -- integer -- time to live, how many seconds to cache the value. 0 (default) means cache forever.

* **connection_name** -- string -- if you have more than one caches dsn then you can use this to set the name of the connection you want (the name of the connection is the `#connection_name` fragment of a dsn url).

```python
class MyIntCache(Cache):
  serialize = False # don't bother to serialize values since we're storing ints
  prefix = "MyIntCache" # every key will have this prefix, change to invalidate all currently cached values
  ttl = 7200 # store each int for 2 hours
```

### Cache Classes


#### Cache

This is the traditional caching object, it sets a value into a key:

```python
c = Cache('foo')
c.data = 5 # cache 5
c += 10 # increment 5 by 10, store 15 in the cache

c.clear()
print c # None
```


#### DictCache

This caching object acts more or less like a Python [dictionary](http://docs.python.org/3/library/stdtypes.html#mapping-types-dict):

```python
c = DictCache('foo')
c['bar'] = 'b'
c['che'] = 'c'
for key, val in c.items():
  print key, val # will print "bar b" and then "che c"
```


#### SetCache

This caching object acts more or less like a Python [set](http://docs.python.org/2/library/stdtypes.html#set):

```python
c = SetCache('foo')
c.add('bar')
c.add('che')
print 'che' in c # True
```


#### SortedSetCache

This caching object acts more or less like a Python [set](http://docs.python.org/2/library/stdtypes.html#set) but has some changes:

* The `add()` method takes a tuple `(score, elem)`
* The `pop()` method will pop off the lowest score from the set, and pops a tuple `(score, elem)`
* An `rpop()` method allows you to pop the highest score from the set.
* Iterating through the set results in tuples of `(score, elem)`, not just elem like in a normal set or the `SetCache`.

```python
c = SortedSetCache('foo')
c.add((1, 'bar'))
c.add((10, 'che'))
print 'che' in c # True
print c.pop() # (1, bar)
```


#### SentinelCache

Handy for gated access:

```python
c = SentinelCache('foo')

if not c:
    print("sentinel value isn't set so do this")

if not c:
    print("sentinel value is now set so this will never run")
```


### Decorator

Caches exposes a decorator to make caching the return value of a function easy. This only works for `Cache` derived caching.

The `cached` decorator can accept a caching class and also a key function (similar to the python [built-in `sorted()` function](http://docs.python.org/2/library/functions.html#sorted) key argument), except caches key argument returns a list that can be passed to the constructor of the caching class as `*args`.

```python
import functools
from caches import Cache

@Cache.cached(key="some_cache_key")
def foo(*args):
    return functools.reduce(lambda x, y: x+y, args)

foo(1, 2) # will compute the value and cache the return value
foo(1, 2) # return value from cache

foo(1, 2, 3) # uh-oh, wrong value, our key was too static
```

Let's try again, this time with a dynamic key

```python
@Cache.cached(key=lambda *args: args)
def foo(*args):
    return functools.reduce(lambda x, y: x+y, args)

foo(1, 2) # compute and cache, key func returned [1, 2]
foo(1, 2) # grabbed from cache
foo(1, 2, 3) # compute and cache because our key func returned [1, 2, 3]
```

What about custom caches classes?

```python
class CustomCache(Cache): pass

@CustomCache.cached(key=lambda *args: args)
def foo(*args):
    return functools.reduce(lambda x, y: x+y, args)
```


## Install

Use pip from pypi:

    pip install caches

or from source using pip:

    pip install -U "git+https://github.com/jaymon/caches#egg=caches"



## License

MIT

## Other links

* [redis_collections module](https://github.com/redis-collections/redis-collections) - If you need broader/deeper support for python standard types like dict and set then check out this project. Prior to 2.0.0 Caches had a dependency on this module.
* [Dogpile](http://dogpilecache.readthedocs.org/en/latest/usage.html)





%package help
Summary:	Development documents and examples for caches
Provides:	python3-caches-doc
%description help
# Caches

A Python caching library that gives a similar interface to standard Python data structures like Dict and Set but is backed by [Redis](https://redis.io).

Caches has been used in production for years across many different products, handling millions of requests.


## How to use

Caches can only use [Redis](http://redis.io).

Caches relies on setting the environment variable `CACHES_DSN`:

    caches.interface.Redis://localhost/0

If you want to cache things using more than one redis server, you can actually set multiple environment variables:

    export CACHES_DSN_1=caches.interface.Redis://somedomain.com/0#redis1
    export CACHES_DSN_2=caches.interface.Redis://someotherdomain.com/0#redis2

After you've set the environment variable, then you just need to import caches in your code:

```python
import caches
```

Caches will take care of parsing the url and creating the redis connection, automatically, so after the import Caches will be ready to use.


### Interface

All caches caching classes have a similar interface, their constructor takes a key and data:

```python
c = Cache(['foo', 'bar', 'che'])
print c.key # foo.bar.che
```

If you would like to init your cache object with a value, use the `data` `**kwarg`:

```python
c = Cache('foo', data="boom!")
print c.key # foo
print c # "boom!"
```

Each caches base caching class is meant to be extended so you can set some parameters:

* **serialize** -- boolean -- True if you want all values pickled, False if you don't (ie, you're caching ints or strings or something).

* **prefix** -- string -- This will be prepended to the key args you pass into the constructor.

* **ttl** -- integer -- time to live, how many seconds to cache the value. 0 (default) means cache forever.

* **connection_name** -- string -- if you have more than one caches dsn then you can use this to set the name of the connection you want (the name of the connection is the `#connection_name` fragment of a dsn url).

```python
class MyIntCache(Cache):
  serialize = False # don't bother to serialize values since we're storing ints
  prefix = "MyIntCache" # every key will have this prefix, change to invalidate all currently cached values
  ttl = 7200 # store each int for 2 hours
```

### Cache Classes


#### Cache

This is the traditional caching object, it sets a value into a key:

```python
c = Cache('foo')
c.data = 5 # cache 5
c += 10 # increment 5 by 10, store 15 in the cache

c.clear()
print c # None
```


#### DictCache

This caching object acts more or less like a Python [dictionary](http://docs.python.org/3/library/stdtypes.html#mapping-types-dict):

```python
c = DictCache('foo')
c['bar'] = 'b'
c['che'] = 'c'
for key, val in c.items():
  print key, val # will print "bar b" and then "che c"
```


#### SetCache

This caching object acts more or less like a Python [set](http://docs.python.org/2/library/stdtypes.html#set):

```python
c = SetCache('foo')
c.add('bar')
c.add('che')
print 'che' in c # True
```


#### SortedSetCache

This caching object acts more or less like a Python [set](http://docs.python.org/2/library/stdtypes.html#set) but has some changes:

* The `add()` method takes a tuple `(score, elem)`
* The `pop()` method will pop off the lowest score from the set, and pops a tuple `(score, elem)`
* An `rpop()` method allows you to pop the highest score from the set.
* Iterating through the set results in tuples of `(score, elem)`, not just elem like in a normal set or the `SetCache`.

```python
c = SortedSetCache('foo')
c.add((1, 'bar'))
c.add((10, 'che'))
print 'che' in c # True
print c.pop() # (1, bar)
```


#### SentinelCache

Handy for gated access:

```python
c = SentinelCache('foo')

if not c:
    print("sentinel value isn't set so do this")

if not c:
    print("sentinel value is now set so this will never run")
```


### Decorator

Caches exposes a decorator to make caching the return value of a function easy. This only works for `Cache` derived caching.

The `cached` decorator can accept a caching class and also a key function (similar to the python [built-in `sorted()` function](http://docs.python.org/2/library/functions.html#sorted) key argument), except caches key argument returns a list that can be passed to the constructor of the caching class as `*args`.

```python
import functools
from caches import Cache

@Cache.cached(key="some_cache_key")
def foo(*args):
    return functools.reduce(lambda x, y: x+y, args)

foo(1, 2) # will compute the value and cache the return value
foo(1, 2) # return value from cache

foo(1, 2, 3) # uh-oh, wrong value, our key was too static
```

Let's try again, this time with a dynamic key

```python
@Cache.cached(key=lambda *args: args)
def foo(*args):
    return functools.reduce(lambda x, y: x+y, args)

foo(1, 2) # compute and cache, key func returned [1, 2]
foo(1, 2) # grabbed from cache
foo(1, 2, 3) # compute and cache because our key func returned [1, 2, 3]
```

What about custom caches classes?

```python
class CustomCache(Cache): pass

@CustomCache.cached(key=lambda *args: args)
def foo(*args):
    return functools.reduce(lambda x, y: x+y, args)
```


## Install

Use pip from pypi:

    pip install caches

or from source using pip:

    pip install -U "git+https://github.com/jaymon/caches#egg=caches"



## License

MIT

## Other links

* [redis_collections module](https://github.com/redis-collections/redis-collections) - If you need broader/deeper support for python standard types like dict and set then check out this project. Prior to 2.0.0 Caches had a dependency on this module.
* [Dogpile](http://dogpilecache.readthedocs.org/en/latest/usage.html)





%prep
%autosetup -n caches-2.0.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-caches -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.2-1
- Package Spec generated