summaryrefslogtreecommitdiff
path: root/python-cad-to-h5m.spec
blob: 5df7533c705ac53620b2d8740d4198a9d57f2cd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
%global _empty_manifest_terminate_build 0
Name:		python-cad-to-h5m
Version:	0.3.0
Release:	1
Summary:	Converts CAD files to a DAGMC h5m file using Cubit
License:	MIT License
URL:		https://github.com/fusion-energy/cad_to_h5m
Source0:	https://mirrors.aliyun.com/pypi/web/packages/b9/74/2bff7a5ad47e49f527608ceb6d6a3f998050d6aa4e10889a71f7444429ae/cad_to_h5m-0.3.0.tar.gz
BuildArch:	noarch


%description
[![N|Python](https://www.python.org/static/community_logos/python-powered-w-100x40.png)](https://www.python.org)

[![CircleCI](https://circleci.com/gh/fusion-energy/cad_to_h5m/tree/main.svg?style=svg)](https://circleci.com/gh/fusion-energy/cad_to_h5m/tree/main) [![CI with docker build](https://github.com/fusion-energy/cad_to_h5m/actions/workflows/ci_with_docker_build.yml/badge.svg)](https://github.com/fusion-energy/cad_to_h5m/actions/workflows/ci_with_docker_build.yml)

[![PyPI](https://img.shields.io/pypi/v/cad-to-h5m?color=brightgreen&label=pypi&logo=grebrightgreenen&logoColor=green)](https://pypi.org/project/cad-to-h5m/)


<!-- can't report coverage as cubit init changes scope
[![codecov](https://codecov.io/gh/fusion-energy/cad_to_h5m/branch/main/graph/badge.svg)](https://codecov.io/gh/fusion-energy/cad_to_h5m) -->

[![docker-publish-release](https://github.com/fusion-energy/cad_to_h5m/actions/workflows/docker_publish.yml/badge.svg)](https://github.com/fusion-energy/cad_to_h5m/actions/workflows/docker_publish.yml)

This is a minimal Python package that provides both **command line** and
**API** interfaces for converting **multiple** CAD files (STP and SAT format)
into a DAGMC h5m file using the Cubit Python API.

This is useful for creating the DAGMC geometry for use in compatible neutronics
codes such as OpenMC, FLUKA and MCNP.

The geometry is tagged wih material names, optional imprinted and merging
during the process which can speed up particle transport.

<!-- 
# Command line usage

Perhaps the most common use of this program is to convert a STP file into
DAGMC geometry.
```bash
cad-to-h5m -i part1.stp -o dagmc.h5m -t mat:1 -c /opt/Coreform-Cubit-2021.5/bin/
```

- the ```-i``` or ```--input``` argument specifies the input CAD filename(s)
- the ```-o``` or ```--output``` argument specifies the output h5m filename
- the ```-t``` or ```--tags``` argument specifies the tags to apply to the CAD volumes.
- the ```-c``` or ```--cubit``` argument specifies the path to the Cubit python3 folder
- the ```-v``` or ```--verbose``` argument enables (true) or disables (false) the printing of additional details

Multiple STP or SAT files can also be combined and converted into a DAGMC
geometry. This example combines two STP files into a single geometry with
separate material tags for each STP file and saves the result as a h5m file.

```bash
cad-to-h5m -i part1.stp part2.stp -o dagmc.h5m -t mat:1 mat:2 -c /opt/Coreform-Cubit-2021.5/bin/
```

It is also possible to convert .sat files in the following way.

```bash
cad-to-h5m -i part1.sat -o dagmc.h5m -t mat:1 -c /opt/Coreform-Cubit-2021.5/bin/
``` -->

# Installation

The package is available via the PyPi package manager and the recommended
method of installing is via pip.
```bash
pip install cad_to_h5m
```

In addition [Cubit](https://coreform.com/products/coreform-cubit/) and the 
[Svalinn Plugin](https://github.com/svalinn/Cubit-plugin) needs to be
installed to make full use of this package.

# Python API usage

Creating a h5m file from a single STP file called ```part1.stp``` and applying
a material tag to the volume.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[{'cad_filename':'part1.stp', 'material_tag':'m1'}],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
)
```

Creating a h5m file from two STP files called ```part1.stp``` and ```part2.stp```.
Both parts have distinct material tag applied to them and the result is output
as a h5m file with the filename dagmc.h5m.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {'cad_filename':'part1.stp', 'material_tag':'m1'},
        {'cad_filename':'part2.stp', 'material_tag':'m2'}
    ],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
)
```

Creating a h5m file from a single SAT is a similar process. Note the .sat file
extension.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[{'cad_filename':'part1.sat', 'material_tag':'m1'}],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
)
```

Creating a tet mesh files compatible with the OpenMC / DAGMC Unstructured mesh
format is also possible. Another key called ```tet_mesh``` to the ```files_with_tags``` dictionary will trigger the meshing of that CAD file.
The value of the key will be passed to the Cubit mesh command as an instruction.
The following command will produce a ```unstructured_mesh_file.exo```
file that can then be used in DAGMC compatible neutronics codes. There are examples
[1](https://docs.openmc.org/en/latest/examples/unstructured-mesh-part-i.html)
[2](https://docs.openmc.org/en/latest/examples/unstructured-mesh-part-ii.html) 
for the use of unstructured meshes in OpenMC.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
            'tet_mesh': 'size 0.5'
        }
    ],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
    exo_filename='unstructured_mesh_file.exo'
)
```

Use if ```exo``` files requires OpenMC to be compiled with LibMesh. OpenMC also
accepts DAGMC tet meshes made with MOAB which is another option. The following
example creates a ```cub``` file that contains a mesh. The MOAB tool 
```mbconvert``` is then used to extract the tet mesh and save it as a ```h5m```
file which cna be used in OpenMC as shown in the OpenMC [examples](https://docs.openmc.org/en/stable/examples/unstructured-mesh-part-i.html)

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
            'tet_mesh': 'size 0.5'
        }
    ],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/',
    cubit_filename='unstructured_mesh_file.cub'
)
```
The ```cub``` file produced contains a tet mesh as well as the faceted geometry.
The tet mesh can be extracted and converted to another ```h5m``` file for use in
OpenMC. MOAB is needed to convert the file and includes the command line tool
```mbconvert```, MOAB can be installed into a Conda environment with:

```
conda install -c conda-forge moab
```
Then ```mbconvert``` can be used to extract and convert the tet mesh from the
```cub``` file into a ```h5m``` file.

```bash
mbconvert unstructured_mesh_file.cub unstructured_mesh_file.h5m
```

Scaling geometry is also possible. This is useful as particle transport codes
often make use of cm as the default unit. CAD files typically appear in mm as
the default limit. Some CAD packages ignore units while others make use of them.
The h5m files are assumed to be in cm by particle transport codes so often it
is necessary to scale up or down the geometry. This can be done by adding
another key called ```scale``` and a value to the ```files_with_tags```
dictionary. This example multiplies the geometry by 10.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
            'scale': 10
        }
    ],
    h5m_filename='dagmc.h5m',
)
```

Assigning a material to the implicit complement is also possible. This can be useful on large complex geometries where boolean operations can result in robustness issues. This is implemented by assigning the desired material tag of the implicit complement to the optional ```implicit_complement_material_tag``` argument. Defaults to vacuum.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
        }
    ],
    h5m_filename='dagmc.h5m',
    implicit_complement_material_tag = 'm2'
)
```




%package -n python3-cad-to-h5m
Summary:	Converts CAD files to a DAGMC h5m file using Cubit
Provides:	python-cad-to-h5m
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-cad-to-h5m
[![N|Python](https://www.python.org/static/community_logos/python-powered-w-100x40.png)](https://www.python.org)

[![CircleCI](https://circleci.com/gh/fusion-energy/cad_to_h5m/tree/main.svg?style=svg)](https://circleci.com/gh/fusion-energy/cad_to_h5m/tree/main) [![CI with docker build](https://github.com/fusion-energy/cad_to_h5m/actions/workflows/ci_with_docker_build.yml/badge.svg)](https://github.com/fusion-energy/cad_to_h5m/actions/workflows/ci_with_docker_build.yml)

[![PyPI](https://img.shields.io/pypi/v/cad-to-h5m?color=brightgreen&label=pypi&logo=grebrightgreenen&logoColor=green)](https://pypi.org/project/cad-to-h5m/)


<!-- can't report coverage as cubit init changes scope
[![codecov](https://codecov.io/gh/fusion-energy/cad_to_h5m/branch/main/graph/badge.svg)](https://codecov.io/gh/fusion-energy/cad_to_h5m) -->

[![docker-publish-release](https://github.com/fusion-energy/cad_to_h5m/actions/workflows/docker_publish.yml/badge.svg)](https://github.com/fusion-energy/cad_to_h5m/actions/workflows/docker_publish.yml)

This is a minimal Python package that provides both **command line** and
**API** interfaces for converting **multiple** CAD files (STP and SAT format)
into a DAGMC h5m file using the Cubit Python API.

This is useful for creating the DAGMC geometry for use in compatible neutronics
codes such as OpenMC, FLUKA and MCNP.

The geometry is tagged wih material names, optional imprinted and merging
during the process which can speed up particle transport.

<!-- 
# Command line usage

Perhaps the most common use of this program is to convert a STP file into
DAGMC geometry.
```bash
cad-to-h5m -i part1.stp -o dagmc.h5m -t mat:1 -c /opt/Coreform-Cubit-2021.5/bin/
```

- the ```-i``` or ```--input``` argument specifies the input CAD filename(s)
- the ```-o``` or ```--output``` argument specifies the output h5m filename
- the ```-t``` or ```--tags``` argument specifies the tags to apply to the CAD volumes.
- the ```-c``` or ```--cubit``` argument specifies the path to the Cubit python3 folder
- the ```-v``` or ```--verbose``` argument enables (true) or disables (false) the printing of additional details

Multiple STP or SAT files can also be combined and converted into a DAGMC
geometry. This example combines two STP files into a single geometry with
separate material tags for each STP file and saves the result as a h5m file.

```bash
cad-to-h5m -i part1.stp part2.stp -o dagmc.h5m -t mat:1 mat:2 -c /opt/Coreform-Cubit-2021.5/bin/
```

It is also possible to convert .sat files in the following way.

```bash
cad-to-h5m -i part1.sat -o dagmc.h5m -t mat:1 -c /opt/Coreform-Cubit-2021.5/bin/
``` -->

# Installation

The package is available via the PyPi package manager and the recommended
method of installing is via pip.
```bash
pip install cad_to_h5m
```

In addition [Cubit](https://coreform.com/products/coreform-cubit/) and the 
[Svalinn Plugin](https://github.com/svalinn/Cubit-plugin) needs to be
installed to make full use of this package.

# Python API usage

Creating a h5m file from a single STP file called ```part1.stp``` and applying
a material tag to the volume.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[{'cad_filename':'part1.stp', 'material_tag':'m1'}],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
)
```

Creating a h5m file from two STP files called ```part1.stp``` and ```part2.stp```.
Both parts have distinct material tag applied to them and the result is output
as a h5m file with the filename dagmc.h5m.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {'cad_filename':'part1.stp', 'material_tag':'m1'},
        {'cad_filename':'part2.stp', 'material_tag':'m2'}
    ],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
)
```

Creating a h5m file from a single SAT is a similar process. Note the .sat file
extension.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[{'cad_filename':'part1.sat', 'material_tag':'m1'}],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
)
```

Creating a tet mesh files compatible with the OpenMC / DAGMC Unstructured mesh
format is also possible. Another key called ```tet_mesh``` to the ```files_with_tags``` dictionary will trigger the meshing of that CAD file.
The value of the key will be passed to the Cubit mesh command as an instruction.
The following command will produce a ```unstructured_mesh_file.exo```
file that can then be used in DAGMC compatible neutronics codes. There are examples
[1](https://docs.openmc.org/en/latest/examples/unstructured-mesh-part-i.html)
[2](https://docs.openmc.org/en/latest/examples/unstructured-mesh-part-ii.html) 
for the use of unstructured meshes in OpenMC.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
            'tet_mesh': 'size 0.5'
        }
    ],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
    exo_filename='unstructured_mesh_file.exo'
)
```

Use if ```exo``` files requires OpenMC to be compiled with LibMesh. OpenMC also
accepts DAGMC tet meshes made with MOAB which is another option. The following
example creates a ```cub``` file that contains a mesh. The MOAB tool 
```mbconvert``` is then used to extract the tet mesh and save it as a ```h5m```
file which cna be used in OpenMC as shown in the OpenMC [examples](https://docs.openmc.org/en/stable/examples/unstructured-mesh-part-i.html)

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
            'tet_mesh': 'size 0.5'
        }
    ],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/',
    cubit_filename='unstructured_mesh_file.cub'
)
```
The ```cub``` file produced contains a tet mesh as well as the faceted geometry.
The tet mesh can be extracted and converted to another ```h5m``` file for use in
OpenMC. MOAB is needed to convert the file and includes the command line tool
```mbconvert```, MOAB can be installed into a Conda environment with:

```
conda install -c conda-forge moab
```
Then ```mbconvert``` can be used to extract and convert the tet mesh from the
```cub``` file into a ```h5m``` file.

```bash
mbconvert unstructured_mesh_file.cub unstructured_mesh_file.h5m
```

Scaling geometry is also possible. This is useful as particle transport codes
often make use of cm as the default unit. CAD files typically appear in mm as
the default limit. Some CAD packages ignore units while others make use of them.
The h5m files are assumed to be in cm by particle transport codes so often it
is necessary to scale up or down the geometry. This can be done by adding
another key called ```scale``` and a value to the ```files_with_tags```
dictionary. This example multiplies the geometry by 10.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
            'scale': 10
        }
    ],
    h5m_filename='dagmc.h5m',
)
```

Assigning a material to the implicit complement is also possible. This can be useful on large complex geometries where boolean operations can result in robustness issues. This is implemented by assigning the desired material tag of the implicit complement to the optional ```implicit_complement_material_tag``` argument. Defaults to vacuum.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
        }
    ],
    h5m_filename='dagmc.h5m',
    implicit_complement_material_tag = 'm2'
)
```




%package help
Summary:	Development documents and examples for cad-to-h5m
Provides:	python3-cad-to-h5m-doc
%description help
[![N|Python](https://www.python.org/static/community_logos/python-powered-w-100x40.png)](https://www.python.org)

[![CircleCI](https://circleci.com/gh/fusion-energy/cad_to_h5m/tree/main.svg?style=svg)](https://circleci.com/gh/fusion-energy/cad_to_h5m/tree/main) [![CI with docker build](https://github.com/fusion-energy/cad_to_h5m/actions/workflows/ci_with_docker_build.yml/badge.svg)](https://github.com/fusion-energy/cad_to_h5m/actions/workflows/ci_with_docker_build.yml)

[![PyPI](https://img.shields.io/pypi/v/cad-to-h5m?color=brightgreen&label=pypi&logo=grebrightgreenen&logoColor=green)](https://pypi.org/project/cad-to-h5m/)


<!-- can't report coverage as cubit init changes scope
[![codecov](https://codecov.io/gh/fusion-energy/cad_to_h5m/branch/main/graph/badge.svg)](https://codecov.io/gh/fusion-energy/cad_to_h5m) -->

[![docker-publish-release](https://github.com/fusion-energy/cad_to_h5m/actions/workflows/docker_publish.yml/badge.svg)](https://github.com/fusion-energy/cad_to_h5m/actions/workflows/docker_publish.yml)

This is a minimal Python package that provides both **command line** and
**API** interfaces for converting **multiple** CAD files (STP and SAT format)
into a DAGMC h5m file using the Cubit Python API.

This is useful for creating the DAGMC geometry for use in compatible neutronics
codes such as OpenMC, FLUKA and MCNP.

The geometry is tagged wih material names, optional imprinted and merging
during the process which can speed up particle transport.

<!-- 
# Command line usage

Perhaps the most common use of this program is to convert a STP file into
DAGMC geometry.
```bash
cad-to-h5m -i part1.stp -o dagmc.h5m -t mat:1 -c /opt/Coreform-Cubit-2021.5/bin/
```

- the ```-i``` or ```--input``` argument specifies the input CAD filename(s)
- the ```-o``` or ```--output``` argument specifies the output h5m filename
- the ```-t``` or ```--tags``` argument specifies the tags to apply to the CAD volumes.
- the ```-c``` or ```--cubit``` argument specifies the path to the Cubit python3 folder
- the ```-v``` or ```--verbose``` argument enables (true) or disables (false) the printing of additional details

Multiple STP or SAT files can also be combined and converted into a DAGMC
geometry. This example combines two STP files into a single geometry with
separate material tags for each STP file and saves the result as a h5m file.

```bash
cad-to-h5m -i part1.stp part2.stp -o dagmc.h5m -t mat:1 mat:2 -c /opt/Coreform-Cubit-2021.5/bin/
```

It is also possible to convert .sat files in the following way.

```bash
cad-to-h5m -i part1.sat -o dagmc.h5m -t mat:1 -c /opt/Coreform-Cubit-2021.5/bin/
``` -->

# Installation

The package is available via the PyPi package manager and the recommended
method of installing is via pip.
```bash
pip install cad_to_h5m
```

In addition [Cubit](https://coreform.com/products/coreform-cubit/) and the 
[Svalinn Plugin](https://github.com/svalinn/Cubit-plugin) needs to be
installed to make full use of this package.

# Python API usage

Creating a h5m file from a single STP file called ```part1.stp``` and applying
a material tag to the volume.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[{'cad_filename':'part1.stp', 'material_tag':'m1'}],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
)
```

Creating a h5m file from two STP files called ```part1.stp``` and ```part2.stp```.
Both parts have distinct material tag applied to them and the result is output
as a h5m file with the filename dagmc.h5m.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {'cad_filename':'part1.stp', 'material_tag':'m1'},
        {'cad_filename':'part2.stp', 'material_tag':'m2'}
    ],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
)
```

Creating a h5m file from a single SAT is a similar process. Note the .sat file
extension.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[{'cad_filename':'part1.sat', 'material_tag':'m1'}],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
)
```

Creating a tet mesh files compatible with the OpenMC / DAGMC Unstructured mesh
format is also possible. Another key called ```tet_mesh``` to the ```files_with_tags``` dictionary will trigger the meshing of that CAD file.
The value of the key will be passed to the Cubit mesh command as an instruction.
The following command will produce a ```unstructured_mesh_file.exo```
file that can then be used in DAGMC compatible neutronics codes. There are examples
[1](https://docs.openmc.org/en/latest/examples/unstructured-mesh-part-i.html)
[2](https://docs.openmc.org/en/latest/examples/unstructured-mesh-part-ii.html) 
for the use of unstructured meshes in OpenMC.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
            'tet_mesh': 'size 0.5'
        }
    ],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
    exo_filename='unstructured_mesh_file.exo'
)
```

Use if ```exo``` files requires OpenMC to be compiled with LibMesh. OpenMC also
accepts DAGMC tet meshes made with MOAB which is another option. The following
example creates a ```cub``` file that contains a mesh. The MOAB tool 
```mbconvert``` is then used to extract the tet mesh and save it as a ```h5m```
file which cna be used in OpenMC as shown in the OpenMC [examples](https://docs.openmc.org/en/stable/examples/unstructured-mesh-part-i.html)

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
            'tet_mesh': 'size 0.5'
        }
    ],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/',
    cubit_filename='unstructured_mesh_file.cub'
)
```
The ```cub``` file produced contains a tet mesh as well as the faceted geometry.
The tet mesh can be extracted and converted to another ```h5m``` file for use in
OpenMC. MOAB is needed to convert the file and includes the command line tool
```mbconvert```, MOAB can be installed into a Conda environment with:

```
conda install -c conda-forge moab
```
Then ```mbconvert``` can be used to extract and convert the tet mesh from the
```cub``` file into a ```h5m``` file.

```bash
mbconvert unstructured_mesh_file.cub unstructured_mesh_file.h5m
```

Scaling geometry is also possible. This is useful as particle transport codes
often make use of cm as the default unit. CAD files typically appear in mm as
the default limit. Some CAD packages ignore units while others make use of them.
The h5m files are assumed to be in cm by particle transport codes so often it
is necessary to scale up or down the geometry. This can be done by adding
another key called ```scale``` and a value to the ```files_with_tags```
dictionary. This example multiplies the geometry by 10.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
            'scale': 10
        }
    ],
    h5m_filename='dagmc.h5m',
)
```

Assigning a material to the implicit complement is also possible. This can be useful on large complex geometries where boolean operations can result in robustness issues. This is implemented by assigning the desired material tag of the implicit complement to the optional ```implicit_complement_material_tag``` argument. Defaults to vacuum.

```python
from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
        }
    ],
    h5m_filename='dagmc.h5m',
    implicit_complement_material_tag = 'm2'
)
```




%prep
%autosetup -n cad_to_h5m-0.3.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-cad-to-h5m -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.0-1
- Package Spec generated